(a) ![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
Answer:
![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5*2.5 }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%2A2.5%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5}{1} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%7D%7B1%7D%20%5D%5E%7B2%7D)
*canceling 2.5 in numerator and denominator*
![= [\frac{9-(2.5)(2.6)}{2.6} ]^2\\*Using L.C.M of 2.6 and 1 which comes out to be '2.6'= [\frac{9-(6.5)}{2.6} ]^2\\= [\frac{2.5}{2.6} ]^2\\*multiplying and dividing by '10'= [\frac{2.5*10}{2.6*10} ]^2\\= [\frac{25}{26} ]^2\\= \frac{25^2}{26^2}\\= \frac{625}{676}\\= 0.925](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B9-%282.5%29%282.6%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2AUsing%20L.C.M%20of%202.6%20and%201%20which%20comes%20out%20to%20be%20%272.6%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B9-%286.5%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B2.5%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2Amultiplying%20and%20dividing%20by%20%2710%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B2.5%2A10%7D%7B2.6%2A10%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B25%7D%7B26%7D%20%5D%5E2%5C%5C%3D%20%5Cfrac%7B25%5E2%7D%7B26%5E2%7D%5C%5C%3D%20%5Cfrac%7B625%7D%7B676%7D%5C%5C%3D%200.925)
Properties used:
Cancellation property of fractions
Least Common Multiplier(LCM)
The least or smallest common multiple of any two or more given natural numbers are termed as LCM. For example, LCM of 10, 15, and 20 is 60.
(b) ![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3} ] ^{2}](https://tex.z-dn.net/?f=%20%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%20%20%20%20%5D%20%5E%7B2%7D%20)
Answer:
![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3}] ^{2}\\](https://tex.z-dn.net/?f=%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%5D%20%5E%7B2%7D%5C%5C)
*using
*
*Again, using
*
![= \frac{3x^{2*3a}y^{2*3b}} {-3x^{2*3a} y^{2*3b} } \\= (-1)\frac{3x^{6a}y^{6b}} {3x^{6a} y^{6b} }\\[\tex]*taking -1 common, denominator and numerator are equal*[tex]= -(1)\frac{1}{1}\\= -1](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B3x%5E%7B2%2A3a%7Dy%5E%7B2%2A3b%7D%7D%20%7B-3x%5E%7B2%2A3a%7D%20y%5E%7B2%2A3b%7D%20%7D%20%20%5C%5C%3D%20%28-1%29%5Cfrac%7B3x%5E%7B6a%7Dy%5E%7B6b%7D%7D%20%7B3x%5E%7B6a%7D%20y%5E%7B6b%7D%20%7D%5C%5C%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%2Ataking%20-1%20common%2C%20denominator%20and%20numerator%20are%20equal%2A%3C%2Fp%3E%3Cp%3E%5Btex%5D%3D%20-%281%29%5Cfrac%7B1%7D%7B1%7D%5C%5C%3D%20-1)
Property used: 'Power of a power'
We can raise a power to a power
(x^2)4=(x⋅x)⋅(x⋅x)⋅(x⋅x)⋅(x⋅x)=x^8
This is called the power of a power property and says that to find a power of a power you just have to multiply the exponents.
Given that we assume that all the bases of the triangles are parallel.
We can use AAA or Angle-Angle-Angle to prove that these triangles are similar.
Each parallel line creates the same angle when intersecting with the same side.
For example:
The bases of each triangle cross the left side of all the triangle.
Each angle made by the intersecting of the the parallel base and the side are the same.
Thus, each corresponding angle of all the triangles are congruent.
If these angles are congruent, then we have similar triangles.
Answer: 49/9
Step-by-step explanation:
9x5=45
45+4=49