the answer is yes hope this helps i did this before
Xy = -109i
We could find the value of i by substitute the algebraic form of x and y to the equation above
xy = -109i
(10 - 3i)(3 - 10i) = -109i
(10)(3) -3i(3) + 10(-10i) - 3i(-10i) = -109i
30 - 9i - 100i -30i² = -109i
multiply both side by -1
-30 + 9i + 100i + 30i² = 109i
30i² + 9i + 100i - 109i - 30 = 0
30i² - 30 = 0
30i² = 30
i² = 1
i = -1 or i = 1
Then find the value of x and y if i = -1
If i = -1, therefore
x = 10 - 3(-1)
x = 10 + 3
x = 13
y = (3 - 10i)
y = 3 - 10(-1)
y = 3 + 10
y = 13
x/y = 13/13 = 1
Then find the value of x and y if i = 1
x = 10 - 3(1)
x = 10 - 3
x = 7
y = (3 - 10i)
y = 3 - 10(1)
y = 3 - 10
y = -7
x/y = 7/-7 = -1
The value of x/y is either 1 or -1
Answer:

The graph is also attached.
Step-by-step explanation:
Given the expression

Apply absolute rule:

so the expression becomes


solving condition 1
x−3<5
Add 3 to both sides
x−3+3<5+3
x<8
solving condition 2
x−3>−5
Add 3 to both sides
x−3+3>−5+3
x>−2
combining the intervals

Merging overlapping intervals

Therefore,

The graph is also attached.
-----------------------------------------
Define x :
-----------------------------------------
Let the smallest number be x.
The other two numbers will be x + 1 and x + 2.
-----------------------------------------
Construct Equation :
-----------------------------------------
Sum of these numbers is 72
⇒ x + x + 1 + x + 2 = 72
-----------------------------------------
Solve for x :
-----------------------------------------
x + x + 1 + x + 2 = 72
3x + 3 = 72
3x = 69
x = 23
-----------------------------------------
Find the numbers :
-----------------------------------------
1st number = x = 23
2nd number = x + 1 = 23 + 1 = 24
3rd number = x + 2 = 23 + 2 = 25
----------------------------------------------------------------------------------
Answer : The numbers are 23, 24 and 25.
----------------------------------------------------------------------------------