The answer is <span>A. 16 edges
For most of the solid shapes, we can use Euler's polyhedron formula:
f + v - e = 2
f - the number of faces
v - the number of vertices
e - the number of edges
We know:
f = 5 + 4 = 9
v = 9
e = ?
So:
</span>f + v - e = 2
9 + 9 - e = 2
18 - e = 2
18 = e + 2
e = 18 - 2
e = 16
Answer:
2/52
Step-by-step explanation:
If he took one ace out of 52 cards then it would have been 4/52
but as he's taking 2 aces out of 52 cards it is 2/52
Calculista Ambitious
the correct question in the attached figure
Let
s----------> total savings
case a) Israel added $80 to his savings
we know that
80=(1/8)*s-------> multiply by 8 both sides------> s=$640
the answer case a) is
the equation is
80=(1/8)*s
case b) Israel added $120 to his savings
we know that
120=(1/8)*s-------> multiply by 8 both sides------> s=$960
the answer case b) is
the equation is
120=(1/8)*s
Read more on Brainly.com - brainly.com/question/10503464#readmore


- <u>The </u><u>sum</u><u> </u><u>of </u><u>the </u><u>number </u><u>in </u><u>each </u><u>of </u><u>the </u><u>four </u><u>rows </u><u>is </u><u>the </u><u>same </u>
- <u>The </u><u>sum </u><u>of </u><u>the </u><u>numbers </u><u>in </u><u>each </u><u>of </u><u>the </u><u>three </u><u>columns </u><u>is </u><u>the </u><u>same</u>
- <u>The </u><u>sum </u><u>of </u><u>any </u><u>row </u><u>does </u><u>not </u><u>equal </u><u>the </u><u>sum </u><u>of </u><u>any </u><u>column </u>

<u>According </u><u>to </u><u>the </u><u>Second</u><u> </u><u>rule </u><u>:</u><u>-</u>


<u>According </u><u>to </u><u>the </u><u>first </u><u>rule </u><u>:</u><u>-</u><u> </u>


<u>From </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>got </u><u>:</u><u>-</u>



<u>Subsitute </u><u>(</u><u>3</u><u>)</u><u> </u><u>in </u><u>(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>


<u>We</u><u> </u><u>can </u><u>write </u><u>it </u><u>as </u><u>:</u><u>-</u>



<u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>c </u><u>and </u><u>e </u><u>in </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>


<u>Now</u><u>, </u>









Hence, The value of a, b, c, d and e is 23, 31 ,60 ,33 and 51 .