The answer is: " <span>3x² − 17 " .
______________________________________</span>
f(x) = 3x + 1 ;
________________________________________________
If g(x) = x² − 6 ;
then: (f o g)(x) = f(x² − 6) = 3x + 1 ;
= 3(x² − 6) + 1 = 3x² − 18 + 1 ;
= 3x² − 17 .
_______________________________________________
Heather will have to hop 30 meters which will take her 10 seconds
Answer:
A)
Step-by-step explanation:
the solution of a squared equation is
x = (-b ± sqrt(b² - 4ac)) / (2a)
in our case
a = 1
b = 8
c = 22
x = (-8 ± sqrt(64 - 88))/2 = (-8 ± sqrt(-24))/2 =
= (-8 ± sqrt(4×-6))/2 = (-8 ± 2×sqrt(-6))/2 =
= -4 ± sqrt(-6) = -4 ± i×sqrt(6)
Answer:
an even number is a number that is divisible by 2 so there it will be 16 38 44 48 68 84 and 92
Answer:
D: {(-5, -4, 2, 2, 5)}
R: {(-6, 3, 4, 1, 5)}
The relation is NOT a function.
Step-by-step explanation:
By definition:
A relation is any set of ordered pairs, which can be thought of as (input, output).
A function is a <em><u>relation</u></em> in which no two ordered pairs have the same first component (domain/input/x value) and different second components (range/output/y value).
Looking at the given points in your graph, and in listing down the domain and range, we can infer that the relation is not a function because there is an x-value (2) that has two corresponding y-values: (2, 4) (2, 1).
Another way to tell if a given set of points in a graph represents a function by doing the "Vertical line test." The graph of an equation represents y as a function of x if and only if no vertical line intersects the graph more than once. Looking at the attached image, I drew a vertical line over points (2, 4) (2, 1). The vertical line intersects the two points, which fails the vertical line test. This is an indication that the given relation is not a function.