Answer: n=4
Explanation:
We have the following expression for the volume flow rate
of a hypodermic needle:
(1)
Where the dimensions of each one is:
Volume flow rate 
Radius of the needle 
Length of the needle 
Pressures at opposite ends of the needle
and 
Viscosity of the liquid 
We need to find the value of
whicha has no dimensions, and in order to do this, we have to rewritte (1) with its dimensions:
(2)
We need the right side of the equation to be equal to the left side of the equation (in dimensions):
(3)
(4)
As we can see
must be 4 if we want the exponent to be 3:
(5)
Finally:
(6)
<span>The ball with an initial velocity of 2 m/s rebounds at 3.6 m/s
The ball with an initial velocity of 3.6 m/s rebounds at 2 m/s
There are two principles involved here
Conservation of momentum and conservation of energy.
I'll use the following variables
a0, a1 = velocity of ball a (before and after collision)
b0, b1 = velocity of ball b (before and after collision)
m = mass of each ball.
For conservation of momentum, we can create this equation:
m*a0 + m*b0 = m*a1 + m*b1
divide both sides by m and we get:
a0 + b0 = a1 + b1
For conservation of energy, we can create this equation:
0.5m(a0)^2 + 0.5m(b0)^2 = 0.5m(a1)^2 + 0.5m(b1)^2
Once again, divide both sides by 0.5m to simplify
a0^2 + b0^2 = a1^2 + b1^2
Now let's get rid of a0 and b0 by assigned their initial values. a0 will be 2, and b0 will be -3.6 since it's moving in the opposite direction.
a0 + b0 = a1 + b1
2 - 3.6 = a1 + b1
-1.6 = a1 + b1
a1 + b1 = -1.6
a0^2 + b0^2 = a1^2 + b1^2
2^2 + -3.6^2 = a1^2 + b1^2
4 + 12.96 = a1^2 + b1^2
16.96 = a1^2 + b1^2
a1^2 + b1^2 = 16.96
The equation a1^2 + b1^2 = 16.96 describes a circle centered at the origin with a radius of sqrt(16.96). The equation a1 + b1 = -1.6 describes a line with slope -1 that intersects the circle at two points. Those points being (a1,b1) = (-3.6, 2) or (2, -3.6). This is not a surprise given the conservation of energy and momentum. We can't use the solution of (2, -3.6) since those were the initial values and that would imply the 2 billiard balls passing through each other which is physically impossible. So the correct solution is (-3.6, 2) which indicates that the ball going 2 m/s initially rebounds in the opposite direction at 3.6 m/s and the ball originally going 3.6 m/s rebounds in the opposite direction at 2 m/s.</span>
Answer:
Yes.⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Answer:
a) p = m1 v1 + m2 v2
, b) dp / dt = m1 a1 + m2 a2
, c) It is equivalent to force
dp / dt = 0
Explanation:
In this problem we have two blocks and the system is formed by the two bodies.
Part A. Initially they ask us to find the moment of the whole system
p = m1 v1 + m2 v2
Part B.
Find the derivative
dp / dt = m1 dv1dt + m2 dv2 / dt
dp / dt = m1 a1 + m2 a2
Part C.
Let's analyze the dimensions
m a = [kg] [m / s2] = [N]
It is equivalent to force
Part d
Acceleration is due to a net force applied
Part e
The acceleration of block 1 is due to the force exerted by block 2 during the moment change
Part f
Force of block 1 on block 2
True f12 = m1a1 f21 = m2a2
Part g
By the law of action and reaction are equal magnitude F12 = f21
Part H
dp / dt = 0
Isolated system F12 = F21 and the masses are constant. The total moment is only redistributed
<span>sound waves is an example of mechanical waves</span>