Answer:
Only kinetic.
Explanation:
Potential energy means it has the potential to move. Not something already in motion.
Answer:
Orbital speed=8102.39m/s
Time period=2935.98seconds
Explanation:
For the satellite to be in a stable orbit at a height, h, its centripetal acceleration V2R+h must equal the acceleration due to gravity at that distance from the center of the earth g(R2(R+h)2)
V2R+h=g(R2(R+h)2)
V=√g(R2R+h)
V= sqrt(9.8 × (6371000)^2/(6371000+360000)
V= sqrt(9.8× (4.059×10^13/6731000)
V=sqrt(65648789.18)
V= 8102.39m/s
Time period ,T= sqrt(4× pi×R^3)/(G× Mcentral)
T= sqrt(4×3.142×(6.47×10^6)^3/(6.673×10^-11)×(5.98×10^24)
T=sqrt(3.40×10^21)/ (3.99×10^14)
T= sqrt(0.862×10^7)
T= 2935.98seconds
Answer: v = 2.53 m/s at E 53.1° S
Explanation:
Conservation of momentum
The 400 g object has no North-South velocity, so the initial momentum in that direction is zero. The total momentum after collision must also be zero
0 = 400(8sin35) + 650vy
vy = -2.82376... m/s
In the East direction
400(10) = 400(8cos35) + 650vx
vx = 2.121097...m/s
v = √(2.12² + 2.82²) = 3.531667... ≈ 2.53 m/s
θ = arctan(vy/vx) = arctan(-2.82/2.12) = -53.087... ≈ E53.1°S
Answer:
F1=26N and F2=09N ..this is from the two simultaneously equations
Answer:
About 32.6°
Explanation:
The tangent of the desired angle is the ratio of distance from the wall to height up the wall:
tan(angle of incidence) = (22.7 cm)/(35.5 cm) ≈ 0.63944
angle of incidence = arctan(0.63944) ≈ 32.6°
_____
The angle of incidence is measured from the normal to the mirror.