Answer:
isn't an equivalence relation. It is reflexive but neither symmetric nor transitive.
Step-by-step explanation:
Let
denote a set of elements.
would denote the set of all ordered pairs of elements of
.
For example, with
,
and
are both members of
. However,
because the pairs are ordered.
A relation
on
is a subset of
. For any two elements
,
if and only if the ordered pair
is in
.
A relation
on set
is an equivalence relation if it satisfies the following:
- Reflexivity: for any
, the relation
needs to ensure that
(that is:
.)
- Symmetry: for any
,
if and only if
. In other words, either both
and
are in
, or neither is in
.
- Transitivity: for any
, if
and
, then
. In other words, if
and
are both in
, then
also needs to be in
.
The relation
(on
) in this question is indeed reflexive.
,
, and
(one pair for each element of
) are all elements of
.
isn't symmetric.
but
(the pairs in
are all ordered.) In other words,
isn't equivalent to
under
even though
.
Neither is
transitive.
and
. However,
. In other words, under relation
,
and
does not imply
.
Answer:
10 and 12
Step-by-step explanation:
let the consecutive even integers be n and n + 2 , then
n² - 64 = 3(n + 2) ← distribute parenthesis
n² - 64 = 3n + 6 ( subtract 3n + 6 from both sides )
n² - 3n - 70 = 0 ← in standard form
(n - 10)(n + 7) = 0 ← in factored form
Equate each factor to zero and solve for n
n - 10 = 0 ⇒ n = 10
n + 7 = 0 ⇒ n = - 7
Since n must be a positive even integer then n = 10 and n + 2 = 10 + 2 = 12
The 2 numbers are 10 and 12
Answer: 2
Step-by-step explanation:
Answer:
v = -3
Step-by-step explanation:
6v+3= -75v - 15 (16)
81v= -243
then put it over -3 then
-243 over 81