1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
4 years ago
13

What is the volume of a square-based pyramid with base side lengths of 16 meters, a slant height of 17 meters, and a height of 1

5 meters?
Mathematics
2 answers:
Goshia [24]4 years ago
3 0

Volume = 1280 m3 hope that helps ;)

<span>
</span>
hjlf4 years ago
3 0
The volume of this figure is V=1,280
You might be interested in
Mr. Steiner purchased a car for about $14,000. Assuming his loan was
djverab [1.8K]

Answer:

$415.18

Explanation:

The calculation of the present value of a cash flow or other income stream that produces $1 in income over so many periods of time.

DATA

Amount borrowed = $12,500

Annual interest rate = 12.00%

Monthly interest rate = 1.00%

Period = 36 months

Let monthly payment be x

12,500 = x/1.01 + x/1.01^2 + x/1.01^3  … + x/1.01^35 + x/1.01^36

12,500 = x * (1 - (1/1.01)^36) / 0.01

12,500 = x * 30.107505

x = 12,500/30.107505  

x = 415.18

The monthly payment is $415.18

5 0
3 years ago
4( 3x + 1.5) + 5x solve please
svlad2 [7]

Answer:

Step-by-step explanation:

12x + 6 + 5x

collect like terms

12x + 5x + 6

17x + 6

5 0
3 years ago
at a conference for 500 people, 20% of the participants are french, 50% are americans, 5% are germans, and are of other national
avanturin [10]
The number of French participants is 20\%\cdot 500 = \frac{20}{100} \cdot 500 = 100.
4 0
4 years ago
Read 2 more answers
in a certain population, 11% of people are left-handed. Suppose that you plan to randomly select 100 people and ask each person
Assoli18 [71]

Answer:

c. A and C

Step-by-step explanation:

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Let X the random variable of interest, on this case we now that:

X \sim Binom(n=100, p=0.11)

The probability mass function for the Binomial distribution is given as:

P(X)=(nCx)(p)^x (1-p)^{n-x}

Where (nCx) means combinatory and it's given by this formula:

nCx=\frac{n!}{(n-x)! x!}

We need to check the conditions in order to use the normal approximation.

np=100*0.11=11 > 10 \geq 10

n(1-p)=100*(1-0.11)=99 \geq 10

So we see that we satisfy the conditions and then we can apply the approximation.

If we appply the approximation the new mean and standard deviation are:

E(X)=np=100*0.11=11

\sigma=\sqrt{np(1-p)}=\sqrt{100*0.11(1-0.11)}=3.129

Part A

We want this probability:

P(X \geq 12) = 1-P(X

The z score is defined as

Z=\frac{x-\mu}{\sigma}.

P(X \geq 12) = 1-P(X

Part B

P(X>12) = 1-P(X\leq 12) = 1-P(Z< \frac{12-11}{3.129})=1-0.625=0.375[/tex]

Part C

P(10\leq X \leq 14) = P(X

The z score is defined as

Z=\frac{x-\mu}{\sigma}.

P(10 \leq X \leq 14) =P(Z< \frac{14-11}{3.129}) -P(Z< \frac{10-11}{3.129})=P(Z

So then the best option is : c. A and C

8 0
4 years ago
Solve the system of equations by row-reduction. At each step, show clearly the symbol of the linear combinations that allow you
adell [148]

Answer:

1) The solution of the system is

\left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) The solution of the system is

\left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

Step-by-step explanation:

1) To solve the system of equations

\left\begin{array}{ccccccc}&3x_2&-5x_3&=&89\\6x_1&&+x_3&=&17\\x_1&-x_2&+8x_3&=&-107\end{array}\right

using the row reduction method you must:

Step 1: Write the augmented matrix of the system

\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 2: Swap rows 1 and 2

\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 3:  \left(R_1=\frac{R_1}{6}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 5: \left(R_2=\frac{R_2}{3}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 6: \left(R_3=R_3+R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]

Step 7: \left(R_3=\left(\frac{6}{37}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 8: \left(R_1=R_1-\left(\frac{1}{6}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 9: \left(R_2=R_2+\left(\frac{5}{3}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 10: Rewrite the system using the row reduced matrix:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) To solve the system of equations

\left\begin{array}{ccccccc}4x_1&-x_2&+3x_3&=&12\\2x_1&&+9x_3&=&-5\\x_1&+4x_2&+6x_3&=&-32\end{array}\right

using the row reduction method you must:

Step 1:

\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 2: \left(R_1=\frac{R_1}{4}\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 3: \left(R_2=R_2-\left(2\right)R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 5: \left(R_2=\left(2\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 6: \left(R_1=R_1+\left(\frac{1}{4}\right)R_2\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 7: \left(R_3=R_3-\left(\frac{17}{4}\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]

Step 8: \left(R_3=\left(- \frac{2}{117}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 9: \left(R_1=R_1-\left(\frac{9}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 10: \left(R_2=R_2-\left(15\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 11:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

8 0
3 years ago
Other questions:
  • Erik got caught in a bad snow storm in downtown Chicago. He nearly froze during his 12 minute walk from his work at the museum t
    14·1 answer
  • What is 3/9 and 123/999 as a decimal
    15·1 answer
  • PLZ HELP WILL GIVE BRAINLYIST
    13·1 answer
  • ∠A is complementary to ∠B. The measure of ∠A is (8x+12)∘. The measure of ∠B is half the measure of ∠A.
    5·2 answers
  • If a and b are roots of 3x2-6+2=0then find a+b​
    12·2 answers
  • Explain why 0.04/3.6 has the same answer as 4/360
    10·1 answer
  • A population of 2,000 mosquitos grows at a rate of 15% per month. Which equation models the population, p(t), of the mosquitos a
    13·1 answer
  • 3 2/5 x 6/9 what would it be help please
    12·2 answers
  • What is the smallest positive integer n such that n! ends in at least 2019 zeros?​
    10·1 answer
  • 13 7in 7in 7in volume and surface area pyramid
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!