1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
3 years ago
14

Anybody know the Answer ???

Mathematics
1 answer:
Aliun [14]3 years ago
3 0

Answer:

X=16

Step-by-step explanation:

Since the lines are parallel the angles are equal so set the equations equal

You might be interested in
A rectangular box has the following dimensions L= 6 cm W= 5 cm H= 2 cm. What is the volume of the box? *
Oksanka [162]

Answer:

Volume=LXWXH

=(6cmx5cm)x2cm

=30cm²x2cm

60cm²

Step-by-step explanation:

8 0
3 years ago
Find the center and radius of the sphere x2+2x+y2−4y+z2−8z=60
anyanavicka [17]
Hello : 
<span>x²+2x+y²−4y+z²−8z=60
(x²+2x) + (y² - 4y) +(z² - 8z) = 60
(x²+2x+1) -1 +(y² - 4y +4 ) - 4  +( z² - 8z+16) -16 = 60
(x+1)² +(y-2)² +(z - 4)² = 9²
</span><span>the center is the point : A(-1, 2 , 4)
and radius : 9</span>
8 0
4 years ago
\lim _{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)
Vinvika [58]

\displaystyle \lim_{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)

Both the numerator and denominator approach 0, so this is a candidate for applying L'Hopital's rule. Doing so gives

\displaystyle \lim_{x\to 0}\left(2\ln(1+3x)+\dfrac{6x}{1+3x}+\cos(x)\tan(3x)+3\sin(x)\sec^2(x)-6x^2}{3\sin(3x)}\right)

This again gives an indeterminate form 0/0, but no need to use L'Hopital's rule again just yet. Split up the limit as

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} + \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} \\\\ + \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} + \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} \\\\ - \lim_{x\to0}\frac{6x^2}{3\sin(3x)}

Now recall two well-known limits:

\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax}=1\text{ if }a\neq0 \\\\ \lim_{x\to0}\frac{\ln(1+ax)}{ax}=1\text{ if }a\neq0

Compute each remaining limit:

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{\ln(1+3x)}{3x} \times \lim_{x\to0}\frac{3x}{\sin(3x)} = \frac23

\displaystyle \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\frac{1}{1+3x} = \frac23

\displaystyle \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\cos(x)}{\cos(3x)} = \frac13

\displaystyle \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\sin(x)}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\sec^2(x) = \frac13

\displaystyle \lim_{x\to0}\frac{6x^2}{3\sin(3x)} = \frac23 \times \lim_{x\to0}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}x = 0

So, the original limit has a value of

2/3 + 2/3 + 1/3 + 1/3 - 0 = 2

6 0
3 years ago
Is (-7,-4) a solution of -2y-x=15?
Vinvika [58]

Answer:

Yes it is

Step-by-step explanation:

5 0
3 years ago
Please help out guys.
Kobotan [32]

Answer:

39

Step-by-step explanation:

-\left(\left(-1\right)^2-4\right)^3-4\left(-3\right)

=-\left(-3\right)^3-4\left(-3\right)

=-\left(-27\right)-4\left(-3\right)

=-\left(-27\right)-\left(-12\right)

=39

7 0
3 years ago
Other questions:
  • Help me please ASAP
    15·2 answers
  • Is this true or false
    11·2 answers
  • The volume of pyramid A is ? The volume of pyramid B. If the height of pyramid B increases to twice that of pyramid A, the new v
    10·1 answer
  • What are the coordinates of the vertex for f(x) = x2 + 4x + 10?
    12·2 answers
  • Use all four operations without parentheses to write an expression that has a value of 100
    5·1 answer
  • Which sentence demonstrates the multiplicative identity? A: 1/2•2=1 B: 1/2•1=1/2 C: 1/2+0= 1/2
    9·2 answers
  • Graphing Polynomial Functions
    11·1 answer
  • Seema runs 5 miles more per week than her sister Padma. If Seema runs 17 miles per week, which equation could be used to find th
    6·1 answer
  • Write the product using exponents.<br><br> (-6) x (-6)
    15·2 answers
  • Write a quadratic function in standard form with axis of symmetry x=-5 and y -intercept 3 .
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!