1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
san4es73 [151]
3 years ago
7

Which graph shows a function where f(2) = 4?

Mathematics
1 answer:
ivann1987 [24]3 years ago
7 0

Answer:

The first graph shows a function where f(2)=4

You might be interested in
Charges $5 entree fee and $2 per hour
Veseljchak [2.6K]

5 + 2h = total money spent


3 0
3 years ago
the name Joe is very common at a school in one out of every ten students go by the name. If there are 15 students in one class,
kumpel [21]

Using the binomial distribution, it is found that there is a 0.7941 = 79.41% probability that at least one of them is named Joe.

For each student, there are only two possible outcomes, either they are named Joe, or they are not. The probability of a student being named Joe is independent of any other student, hence, the <em>binomial distribution</em> is used to solve this question.

<h3>Binomial probability distribution </h3>

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

C_{n,x} = \frac{n!}{x!(n-x)!}

The parameters are:

  • x is the number of successes.
  • n is the number of trials.
  • p is the probability of a success on a single trial.

In this problem:

  • One in ten students are named Joe, hence p = \frac{1}{10} = 0.1.
  • There are 15 students in the class, hence n = 15.

The probability that at least one of them is named Joe is:

P(X \geq 1) = 1 - P(X = 0)

In which:

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{15,0}.(0.1)^{0}.(0.9)^{15} = 0.2059

Then:

P(X \geq 1) = 1 - P(X = 0) = 1 - 0.2059 = 0.7941

0.7941 = 79.41% probability that at least one of them is named Joe.

To learn more about the binomial distribution, you can take a look at brainly.com/question/24863377

8 0
2 years ago
What is V125 in simplest form?
kvv77 [185]

Answer:

5\sqrt{5}

Step-by-step explanation:

Using the rule of radicals

\sqrt{a} × \sqrt{b} ⇔ \sqrt{ab} , then

\sqrt{125}

= \sqrt{25(5)}

= \sqrt{25} × \sqrt{5}

= 5\sqrt{5}

6 0
3 years ago
Find "G". Round to two<br>decimal places.<br>G= R+ab/at<br>R=257<br>a=4.88<br>b=37.4<br>t=61.5​
givi [52]

Answer:

G ≈ 1.46

Step-by-step explanation:

Given

G = \frac{R+ab}{at} , substitute values

G = \frac{257 4.88(37.4)}{4.88(61.5)}

   = \frac{257+182.512}{300.12}

   = \frac{439.512}{300.12} ≈ 1.46 ( to 2 dec. places )

6 0
3 years ago
An equation is shown below:
bekas [8.4K]

\quad \huge \quad \quad \boxed{ \tt \:Answer }

  • \texttt{Step 1: 18x − 42 = 2}

  • \texttt{Step 2: 18x = 44 }

____________________________________

\large \tt Solution  \: :

\qquad \tt \rightarrow \: 6(3x - 7) = 2

Step 1 -

\qquad \tt \rightarrow \: 18x - 42 = 2

[ distributive property ]

Step 2 -

\qquad \tt \rightarrow \: 18x = 2 + 42

\qquad \tt \rightarrow \: 18x = 44

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

7 0
2 years ago
Other questions:
  • Divide the following polynomial, then place the answer in the proper location on the grid.
    9·2 answers
  • What is the slope intercept form equation of the line that passes through 1,3 and 3,7
    7·1 answer
  • What flavor goldfish​
    10·1 answer
  • A pack of gum costs 75 cents. That is 3 cents less than three times what the pack cost 20 years ago. Which equation could be use
    10·2 answers
  • The proof that ΔMNS ≅ ΔQNS is shown. Given: ΔMNQ is isosceles with base MQ, and NR and MQ bisect each other at S. Prove: ΔMNS ≅
    12·2 answers
  • Can someone help me with this question?
    7·1 answer
  • Can anyone help me with this geometry test please like I will do anything!! I will give brainlist!!
    14·2 answers
  • How would you get 32a^5?
    9·2 answers
  • Solve for x and y on the regular hexagon ABCDEF.
    10·1 answer
  • What percent of 4c in each expression? <br> 5c
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!