E represents units of energy, m represents units of mass, and c2 is the speed of light squared, or multiplied by itself
So I THINK that A is the right answer but i may be wrong.
I hope this helped :)
Answer:

Explanation:
Hello there!
In this case, since the combustion of B2H6 is:

Thus, since there is 1:2 mole ratio between the reactant and product, the produced grams of the latter is:


Best regards!
Here's the equation:
<span>Fe2 O3 + 2Al → 2Fe + Al2 O3
</span>
Here's the question.
What mass of Al will react with 150g of Fe2 O3?
<span>In every 2 moles Al you need 1 mole Fe2O3 </span>
<span>moles = mass / molar mass </span>
<span>moles Fe2O3 = 150 g / 159.69 g/mol </span>
<span>= 0.9393 moles </span>
<span>moles Al needed = 2 x moles Fe2O3 </span>
<span>= 2 x 0.9393 mol </span>
<span>= 1.879 moles Al needed </span>
<span>mass = molar mass x moles </span>
<span>mass Al = 26.98 g/mol x 1.879 mol </span>
<span>= 50.69 g </span>
<span>= 51 g (2 sig figs)
</span>
So the <span>mass of Al that will react with 150g of Fe2 O3 is 51 grams.</span>
Answer:
Atoms are indivisible
I had a hard time finding this out.
Explanation: Dalton's atomic theory was the first complete attempt to describe all matter in terms of atoms and their properties. Dalton based his theory on the law of conservation of mass and the law of constant composition. The first part of his theory states that all matter is made of atoms, which are indivisible.
The answer is that exact locations within either cannot be determined at any given moment in time.
An electron cloud be compared with a spinning airplane propeller in the manner that in both exact location within either cannot be determined at any given moment in time.
In both electron cloud as well as spinning airplane propeller, there is a probability of finding either but exact location can not be determined.