Answer:
The cost of the old ball was $100.
Step-by-step explanation:
The cost of the new ball = $300
The new ball has three times the price of his old ball.
So, let the price of the old ball be = x
As per situation, we get the equation:

Dividing both sides by 3:

=> x = 100
Hence, the cost of the old ball was $100.
Answer:
P and Q are two points on the line x-y+1=0 and are at a distant of 5 units from the origin. Find the area of triangle POQ.
Step-by-step explanation:
P and Q are the intersection points of
x-y+1 = 0 and the circle x^2 + y^2 = 25
sub y = x+1 into the circle
x^2 + (x+1)^2 = 25
x^2 + x^2 + 2x + 1 - 25 = 0
x^2 + x - 12 = 0
(x+4)(x-3) = 0
x = 3 or x = -4
y = 4 or y = -3
so P(3,4) and Q(-4,3) are our two points
Height of triangle.
h = |0 - 0 + 1|/√2 = 1/√2
PQ = √( (-7)^2 + 1^2) = √50 = 5√2
area POQ = (1/2)(1/√2)(5√2) = 5/2 square units
hope this helped
Answer:
The mean and the standard deviation of the number of students with laptops are 1.11 and 0.836 respectively.
Step-by-step explanation:
Let <em>X</em> = number of students who have laptops.
The probability of a student having a laptop is, P (X) = <em>p</em> = 0.37.
A random sample of <em>n</em> = 30 students is selected.
The event of a student having a laptop is independent of the other students.
The random variable <em>X</em> follows a Binomial distribution with parameters <em>n</em> and <em>p</em>.
The mean and standard deviation of a binomial random variable <em>X</em> are:

Compute the mean of the random variable <em>X</em> as follows:

The mean of the random variable <em>X</em> is 1.11.
Compute the standard deviation of the random variable <em>X</em> as follows:

The standard deviation of the random variable <em>X</em> is 0.836.
There are 112 days in 16 weeks because all you have too do is take 16 and multiply it by 7 which gets you 112. Hope this helped.