Johnny is selling tickets to a school play. On the first day of ticket sales he sold 14 senior (S) citizen tickets and 4 child (C) tickets for a total of $200. On the second day of ticket sales he sold 7 senior (S) citizen tickets and 1 child (C) ticket for a total of $92. What is the price of one child ticket?
14S + 4C = 200
14S = 200 - 4C
S = (200 - 4C)/14
7S + 1C = 92
7S = 92 - C
S = (92 - C)/7
(200 - 4C)/14 = (92 - C)/7
7 x (200 - 4C) = 14 x (92 - C)
1400 - 28C = 1288 - 14C
1400 - 1288 = 28C - 14C
112 = 14C
C = 112/14 = 8
the price of one child ticket = $8
Ok so basically, the number of student tickets is 3x, where x=the number of adult tickets sold. And we know that s(for student tickets)+x=480 total tickets sold. So if we replace s with 3x we have 3x+x=480, or 4x=480. We divide by 4 and get x=120, which is the amount of adult tickets sold.
The answer is c. Difference of squares
y - 2 = -3 (x+1)
point slope form
y-y1 = m(x-x1)
looking at the above equation
the slope is -3