1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
4 years ago
11

Distance measured in miles distance measured in yards 1 5

Mathematics
1 answer:
insens350 [35]4 years ago
4 0
You can use ruler and stuff and yea
You might be interested in
The ordered pairs in the table below represent a linear function. x y 6 2 9 8 What is the slope of the function?
sineoko [7]

Answer:

1/2 i think :)

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
What's 5x + 3x because I don't know what to do
Nataly_w [17]

Answer:

8x

Step-by-step explanation:

5x and 3x are like terms, so we can combine them.

5x+3x=8x

5 0
3 years ago
Students in a representative sample of 69 second-year students selected from a large university in England participated in a stu
Serhud [2]

Answer:

95% confidence interval estimate of μ, the mean procrastination scale for second-year students at this terval college is [39.34 , 42.66].

Step-by-step explanation:

We are given that for the 69 second-year students in the study at the university, the sample mean procrastination score was 41.00 and the sample standard deviation was 6.89.

Firstly, the pivotal quantity for 95% confidence interval for the true mean is given by;

                         P.Q. = \frac{\bar X -\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean procrastination score = 41

             s = sample standard deviation = 6.89

            n = sample of students = 69

            \mu =  population mean estimate

<em>Here for constructing 95% confidence interval we have used One-sample t test statistics because we don't know about population standard deviation.</em>

So, 95% confidence interval for the true mean, \mu is ;

P(-1.9973 < t_6_8 < 1.9973) = 0.95  {As the critical value of t at 68 degree

                                        of freedom are -1.9973 & 1.9973 with P = 2.5%}  

P(-1.9973 < \frac{\bar X -\mu}{\frac{s}{\sqrt{n} } } < 1.9973) = 0.95

P( -1.9973 \times{\frac{s}{\sqrt{n} } } < {\bar X -\mu} < 1.9973 \times{\frac{s}{\sqrt{n} } } ) = 0.95

P( \bar X-1.9973 \times{\frac{s}{\sqrt{n} } } < \mu < \bar X+1.9973 \times{\frac{s}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for </u>\mu =[\bar X-1.9973 \times{\frac{s}{\sqrt{n} } } , \bar X+1.9973 \times{\frac{s}{\sqrt{n} } }]

                              = [ 41-1.9973 \times{\frac{6.89}{\sqrt{69} } } , 41+1.9973 \times{\frac{6.89}{\sqrt{69} } } ]

                              = [39.34 , 42.66]

Therefore, 95% confidence interval estimate of μ, the mean procrastination scale for second-year students at this terval college is [39.34 , 42.66].

5 0
3 years ago
Draw out a two column proof for each problem below. Complete all problems on one page and upload ONE photo of the entire assignm
Hunter-Best [27]

Two or more <u>triangles</u> are <em>congruent </em>if on comparison, they have equal lengths of <u>sides,</u> and measure of <u>angles</u>.

Therefore, the required proofs for each question are shown below:

Problem 1:

<em>Congruent triangles</em> are <u>triangles</u> with equal lengths of <em>corresponding</em> <u>sides</u> and measures of internal <u>angles</u>.

Thus,

                     STATEMENT                          REASON

1. <NMQ ≅ <NPQ                            Any point on a <em>perpendicular bisector</em>      

                                                        makes <u>equal</u> measure of angle with the

                                                        two ends of the<em> line</em> segment.

2. NQ ⊥ MP                                     Definition of a<u> line</u>.

3. MQ ≅ PQ                                     <em>Equal segments</em> of a bisected <u>line</u>.

4. MN ≅ PN                                     Any point on a <em>perpendicular bisector </em>    

                                                        is at the same <u>distance</u> to the

                                                        two ends of the <em>line segment</em>.

5. <MNQ ≅ <PNQ                           <u>Equal</u> measure of the <u>bisected</u> angle.

Problem 2:

A line <em>segment</em> is the shortest <u>distance</u> between two points.

            STATEMENTS                    REASONS

1. m<PSR  ≅ m<PSQ                A <em>perpendicular bisector </em>is always at a right  

                                                  angle to the <u>bisected</u> <em>line segment</em>.

2. m<RPS ≅ m<QPS                 Equal measure of the <u>bisected</u> <em>angle</em>.

3. RS ≅ QS                                Property of a <u>bisected</u> <em>line</em> segment.

4. PR ≅ PQ                                Any point on a <em>perpendicular bisector </em>    

                                                  is at the same <u>distance</u> to the two ends of  

                                                 the <u>line</u> segment.

For more clarifications on the perpendicular bisector of a line segment, visit: brainly.com/question/12475568

#SPJ1

3 0
2 years ago
For what value of c is the function one-to-one?
Mumz [18]

13................Answer:

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Please help me quick ASAP!!!!!!!!!!!
    12·1 answer
  • PLZ help 30 points PLZ help ASAP
    5·2 answers
  • Which expression shows the result of applying the distributive property to 3(1/2x - 1/7)
    13·1 answer
  • if a amount of money takes 6 years to double it self then how amny yrs will it take to make 5 time the money options a)12 b)13 c
    8·1 answer
  • Solve for t.<br> -t = 9(t-10)<br> pls help
    11·1 answer
  • Sunny earns \$12$12 per hour delivering cakes. She worked for xx hours this week. Unfortunately, she was charged \$15$15 for a l
    13·2 answers
  • Write the quadratic function the points are (-1,35) (0,22) (1,11) (2,2) and (3,-5)
    13·1 answer
  • Trapezoid A and trapezoid B as shown on the coordinate grid.
    6·1 answer
  • Evaluate with tables(find the logarithm): (0.00531)⅖ x(0.00312)³/(0.03414)⁴​
    14·1 answer
  • Which equation has a solution of x = 4
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!