Answer:
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of 2.5 feet and a standard deviation of 0.4 feet.
This means that 
Find the probability that an individual man’s step length is less than 1.9 feet.
This is the p-value of Z when X = 1.9. So



has a p-value of 0.0668
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
Answer:
f(-2) = -6
Step-by-step explanation:
2(-2-3) + 4
2(-5) + 4
-10 + 4
-6
Of the function choices offered, only the first includes (-1, 5) in its graph.
a) y = 10(2)^x
A is the correct answer. ............
A.......................... hope it helps