Given:
15. 
17. 
19. 
To find:
The values of the given logarithms by using the properties of logarithms.
Solution:
15. We have,

Using property of logarithms, we get
![[\because \log_aa=1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%3D1%5D)
Therefore, the value of
is 1.
17. We have,

Using properties of logarithms, we get
![[\because \log_a\dfrac{m}{n}=-\log_a\dfrac{n}{m}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_a%5Cdfrac%7Bm%7D%7Bn%7D%3D-%5Clog_a%5Cdfrac%7Bn%7D%7Bm%7D%5D)
![[\because \log_aa=1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%3D1%5D)
Therefore, the value of
is -1.
19. We have,

Using property of logarithms, we get
![[\because a^{\log_ax}=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E%7B%5Clog_ax%7D%3Dx%5D)
Therefore, the value of
is 100.
Answer:
The range is 35.465 to 35.535
Step-by-step explanation:
Subtract 0.035 from 35.5 then add 0.035 to 35.5.
Answer:
16
Step-by-step explanation:
b^2
Let b= -4
(-4)^2
16
This in what I got:
(-7i)(10i)
-70i