First combine like terms:
6n-2n = 4n
7n-2=4n
subtract 7n from both sides
7n-2=4n
-7n -7n
-2=-3n
divide -2 on both sides.
n=1.5
In analytical geometry, there are already derived equations to find the distance of lines and points as well as the angle made between two lines. As special case is when the other line is one of the coordinate axis. Then, the formula can be simplified to
tan θ =m, where m is the slope of the equation
In the next step, we also incorporate operations of calculus. Since the slope is equal to Δy/Δx, this is equivalent to dy/dx in calculus. Therefore, you can find the slope by differentiating the equation in terms of x.
<span>y-2x=7
y = 2x+7
dy/dx = 2 =m
So,
tan </span>θ = 2
θ = tan⁻¹(2)
θ = 63.43°
Answer:

And we can find the individual probabilities using the probability mass function
And replacing we got:

Step-by-step explanation:
Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Solution to the problem
Let X the random variable of interest "number of automobiles with both headligths working", on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
And for this case we want to find this probability:

And we can find the individual probabilities using the probability mass function
And replacing we got:
