Answer:
- KEi = 2.256×10^5 J
- KEf = 9.023×10^5 J
- 4 times as much work
Step-by-step explanation:
The kinetic energy for a given mass and velocity is ...
KE = (1/2)mv^2 . . . . . m is mass
At its initial speed, the kinetic energy of the car is ...
KEi = (1/2)(810 kg)(23.6 m/s)^2 ≈ 2.256×10^5 J . . . . . m is meters
At its final speed, the kinetic energy of the car is ...
KEf = (1/2)(810 kg)(47.2 m/s)^2 ≈ 9.023×10^5 J
The ratio of final to initial kinetic energy is ...
(9.023×10^5)/(2.256×10^5) = 4
4 times as much work must be done to stop the car.
_____
You know this without computing the kinetic energy. KE is proportional to the square of speed, so when the speed doubles, the KE is multiplied by 2^2 = 4.
Answer:
I believe the answer to this question is (4,1)
Answer: x=2
57+x=25x
subtract x from both sides
57+x-x=25x-x
57=24x
divide by 24 on both sides
57÷24=24x÷24
x=2.375
I hope this is good enough:
Answer:
There are no solution to those equations
Step-by-step explanation: