
. Subtract 10x from both sides.

. Divide by 5 on both sides. x=20. So you would need to buy 20 movies.
Answer:
a) Shawn's error was that he Multiplied 15 by 2x only. He didn't Multiply 15 by 7
b) The difference, in square feet, between the actual area of Shawn’s garden and the area found using his expression is given as
98 square feet
Step-by-step explanation:
The area in, square feet, of Shawn’s garden is found be calculating 15(2x + 7). Shawn incorrectly says the area can also be found using the expression 30x + 7.
The correct area =
15(2x + 7).
= 30x + 105 square feet
The error in Shawn’s expression is
= 15(2x + 7)
= 30x + 7 square feet
Shawn's error was that he Multiplied 15 by 2x only. He didn't Multiply 15 by 7
The difference, in square feet, between the actual area of Shawn’s garden and the area found using his expression is given as
30x + 105 square feet - 30x + 7 square feet
= 30x + 105 - (30x + 7)
= 30x - 30x + 105 - 7
= 98 square feet
![\bf n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ a_n=2-5(n-1)\implies a_n=\stackrel{\stackrel{a_1}{\downarrow }}{2}+(n-1)(\stackrel{\stackrel{d}{\downarrow }}{-5})](https://tex.z-dn.net/?f=%5Cbf%20n%5E%7Bth%7D%5Ctextit%7B%20term%20of%20an%20arithmetic%20sequence%7D%20%5C%5C%5C%5C%20a_n%3Da_1%2B%28n-1%29d%5Cqquad%20%5Cbegin%7Bcases%7D%20n%3Dn%5E%7Bth%7D%5C%20term%5C%5C%20a_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5C%20d%3D%5Ctextit%7Bcommon%20difference%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20a_n%3D2-5%28n-1%29%5Cimplies%20a_n%3D%5Cstackrel%7B%5Cstackrel%7Ba_1%7D%7B%5Cdownarrow%20%7D%7D%7B2%7D%2B%28n-1%29%28%5Cstackrel%7B%5Cstackrel%7Bd%7D%7B%5Cdownarrow%20%7D%7D%7B-5%7D%29)
so, we know the first term is 2, whilst the common difference is -5, therefore, that means, to get the next term, we subtract 5, or we "add -5" to the current term.

just a quick note on notation:
![\bf \stackrel{\stackrel{\textit{current term}}{\downarrow }}{a_n}\qquad \qquad \stackrel{\stackrel{\textit{the term before it}}{\downarrow }}{a_{n-1}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{current term}}{a_5}\qquad \quad \stackrel{\textit{term before it}}{a_{5-1}\implies a_4}~\hspace{5em}\stackrel{\textit{current term}}{a_{12}}\qquad \quad \stackrel{\textit{term before it}}{a_{12-1}\implies a_{11}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_n%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bthe%20term%20before%20it%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_%7Bn-1%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_5%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B5-1%7D%5Cimplies%20a_4%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_%7B12%7D%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B12-1%7D%5Cimplies%20a_%7B11%7D%7D)
Y
y=ax
where a is a constant of proportionality;
y=20, x=4
20=4a
a=20/4
a=5
y=5x
The constant of variation is 5