Answer:
a) P ( 3 ≤X≤ 5 ) = 0.02619
b) E(X) = 1
Step-by-step explanation:
Given:
- The CDF of a random variable X = { 0 , 1 , 2 , 3 , .... } is given as:
Find:
a.Calculate the probability that 3 ≤X≤ 5
b) Find the expected value of X, E(X), using the fact that. (Hint: You will have to evaluate an infinite sum, but that will be easy to do if you notice that
Solution:
- The CDF gives the probability of (X < x) for any value of x. So to compute the P ( 3 ≤X≤ 5 ) we will set the limits.

- The Expected Value can be determined by sum to infinity of CDF:
E(X) = Σ ( 1 - F(X) )

E(X) = Limit n->∞ [1 - 1 / ( n + 2 ) ]
E(X) = 1
This expression is called the Discriminant, also shown as Δ.
It is equal to b² - 4ac. This is a very important part of the quadratic formula as it determines whether x will have two values, one repeated value or no real values. Here are a few examples.
a) x² - 2x - 1. a is equal to 1 since 1x² = x². b = -2, c = -1
The discriminant will be (-2)² - 4×1×-1 = 4 + 4 = 8.
Since Δ > 0, there are two x values. Graphed, the parabola sinks below the x axis.
b) x². a = 1, b = 0 (0x = 0), c = 0
The discriminant will be 0² - 4×1×0 = 0 - 0 = 0.
Since Δ = 0, there is only one x value. Graphed, the parabola touches the x axis at only one point.
c) x² + 1. a = 1, c = 1.
The discriminant will be 0² - 4×1×1 = 0 - 4 = -4
Since Δ < 0, there are no real x values. Graphed, the parabola floats above the x axis.
Hope this helps!
Hello :
<span>X - y = 4...(1)
x + y = 8...(2)
(1)+(2) :2x= 12
</span><span>The x-coordinate of the solution to the system shown is __6___.</span>
You have to have a better question to answer that, 100 feet more what?
Answer:
A] A function is a special type of relation for which there is a rule that pairs each input with exactly one output.
Step-by-step explanation: