Answer: 27%
Step-by-step explanation:
9514 1404 393
Answer:
66
Step-by-step explanation:
The card is covered with (6/100)/(1/100) = 6 stickers along the short dimension, and (11/100)/(1/100) = 11 stickers along the long dimension.
The number of stickers on the card is 6×11 = 66.
-2 degrees because 4 times -3 is -12 and 10-12 is -2
Check the picture below, so, that'd be the square inscribed in the circle.
so... hmm the diagonals for the square are the diameter of the circle, and keep in mind that the radius of a circle is half the diameter, so let's find the diameter.
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -2}}\quad ,&{{ 5}})\quad % (c,d) &({{ -8}}\quad ,&{{ -3}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-8-(-2)]^2+[-3-5]^2} \\\\\\ d=\sqrt{(-8+2)^2+(-3-5)^2}\implies d=\sqrt{(-6)^2+(-8)^2} \\\\\\ d=\sqrt{36+64}\implies d=\sqrt{100}\implies d=10](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%28%7B%7B%20-2%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0A%26%28%7B%7B%20-8%7D%7D%5Cquad%20%2C%26%7B%7B%20-3%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-8-%28-2%29%5D%5E2%2B%5B-3-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%28-8%2B2%29%5E2%2B%28-3-5%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-6%29%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B36%2B64%7D%5Cimplies%20d%3D%5Csqrt%7B100%7D%5Cimplies%20d%3D10)
that means the radius r = 5.
now, what's the center? well, the Midpoint of the diagonals, is really the center of the circle, let's check,

so, now we know the center coordinates and the radius, let's plug them in,
The expected length of code for one encoded symbol is

where
is the probability of picking the letter
, and
is the length of code needed to encode
.
is given to us, and we have

so that we expect a contribution of

bits to the code per encoded letter. For a string of length
, we would then expect
.
By definition of variance, we have
![\mathrm{Var}[L]=E\left[(L-E[L])^2\right]=E[L^2]-E[L]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BL%5D%3DE%5Cleft%5B%28L-E%5BL%5D%29%5E2%5Cright%5D%3DE%5BL%5E2%5D-E%5BL%5D%5E2)
For a string consisting of one letter, we have

so that the variance for the length such a string is

"squared" bits per encoded letter. For a string of length
, we would get
.