Inertia is directly proportional to mass.
What is Walter Lewin famous for?
Walter Hendrik Gustav Lewin (born January 29, 1936) is a Dutch astrophysicist and former professor of physics at the Massachusetts Institute of Technology.
Lewin earned his doctorate in nuclear physics in 1965 at the Delft University of Technology and was a member of MIT's physics faculty for 43 years beginning in 1966 until his retirement in 2009.
According to Walter Levin,
The concept of moment of inertia is demonstrated by rolling a series of cylinders down an inclined plane.
Inertia is the resistance of any physical object to a change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed when no forces act upon them.
By rolling a series of cylinders down on an inclined plane , he demonstrated that a cylinder have a smooth friction.
He compares the rolling cylinder by using hollow cylinder and a heavy cylinder , and finalize the result that a hollow cylinder moves slowly but the heavy cylinder move faster.
Hence , By doing this experiment he explained about the inertia that Inertia depend on the mass of the object. As the heavy the object it will take more time to travel or move.
Learn more about inertia here:brainly.com/question/3268780
#SPJ1
Answer:
what r the questions i can’t see them
Explanation:
plastics, Styrofoam hOPE THIS HELPS
Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Answer:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. Since the force required to lift it is equal to its weight, it follows that the gravitational potential energy is equal to its weight times the height to which it is lifted.