Answer:the maximum Hall voltage across the strip= 0.00168 V.
Explanation:
The Hall Voltage is calculated using
Vh= B x v x w
Where
B is the magnitude of the magnetic field, 5.6 T
v is the speed/ velocity of the strip, = 25 cm/s to m/s becomes 25/100=0.25m/s
and w is the width of the strip= 1.2 mm to meters becomes 1.2 mm /1000= 0.0012m
Solving
Vh= 5.6T x 0.25m/s x 0.0012m
=0.00168T.m²/s
=0.00168Wb/s
=0.00168V
Therefore, the maximum Hall voltage across the strip=0.00168V
Answer:
a) t=1s
y = 10.1m
v=5.2m/s
b) t=1.5s
y =11.475 m
v=0.3m/s
c) t=2s
y =10.4 m
v=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Explanation:
Conceptual analysis
We apply the free fall formula for position (y) and speed (v) at any time (t).
As gravity opposes movement the sign in the equations is negative.:
y = vi*t - ½ g*t2 Equation 1
v=vit-g*t Equation 2
y: The vertical distance the ball moves at time t
vi: Initial speed
g= acceleration due to gravity
v= Speed the ball moves at time t
Known information
We know the following data:
Vi=15 m / s

t=1s ,1.5s,2s
Development of problem
We replace t in the equations (1) and (2)
a) t=1s
=15-4.9=10.1m
v=15-9.8*1 =15-9.8 =5.2m/s
b) t=1.5s
=22.5-11.025=11.475 m
v=15-9.8*1.5 =15-14.7=0.3m/s
c) t=2s
= 30-19.6=10.4 m
v=15-9.8*2 =15-19.6=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Answer:
w=fx
w=(15)(5)
w=75
the angle between the deplacement and N is 0
If you mean climate change. Then scientists can study it by seeing where places and things are eroded.