True would be the Correct answer
Answer:
Object 3 has greatest acceleration.
Explanation:
Objects Mass Force
1 10 kg 4 N
2 100 grams 20 N
3 10 grams 4 N
4 1 kg 20 N
Acceleration of object 1,

Acceleration of object 2,

Acceleration of object 3,

Acceleration of object 4,

It is clear that the acceleration of object 3 is
and it is greatest of all. So, the correct option is (3).
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
<h2>WHAT IF I HATE PHYSICS ?</h2>
Answer:
a) F= 0,19 [N] according to problem statement
b) F = 0,19*10⁹ [N] using the right value of K
Explanation:
The force between two electric charges is according to Coulomb´s law is:
F = K * q₁*q₂ / d² where q₁ and q₂ are the charges on body one and body 2 respectively, d is the distance between the two bodies and K is a constant K = 8,988100*10⁹ N.m²/C². The problem establishes to use K = 8,988100 N.m²/C².
NOTE: To value of is : K = 8,988100*10⁹ N.m²/C². I am going to solve the problem using K = 8,988100 N.m²/C² if that information was an error, all we need to get the right answer is multiply the result by 10⁹
Then:
F = 8,988100 * 1,2* 0,36 / (4,5)² [ N*m²/C² ] * [ C*C*/m²]
F = 3,882859/ 20,25 [N]
F= 0,19 [N]
The force is of repulsion since the two charges are positive and in the direction of the straight line which passes through the centers of the bodies