Answer:
-252.5 kJ/mol = ΔH H2O(g)
Explanation:
ΔH Fe2O3 = -825.5kJ/mol
ΔH H2 = 0kJ/mol
ΔH Fe = 0kJ/mol
Based on Hess's law, ΔH of a reaction is the sum of ΔH of products - ΔH of reactants. For the reaction:
Fe2O3(s) + 3 H2(g) →2Fe(s) + 3 H2O(g)
ΔHr = 67.9kJ/mol = 3*ΔH H2O + 2*ΔHFe - (ΔH Fe2O3 + 3*Δ H2)
67.9kJ/mol = 3*ΔH H2O + 2*0kJ/mol - (ΔH -825.5kJ/mol + 3*Δ H2)
67.9 = 3*ΔH H2O(g) + 825.5kJ/mol
-757.6kJ/mol = 3*ΔH H2O(g)
<h3>-252.5 kJ/mol = ΔH H2O(g)</h3>
Answer:
The answer is RNA
Explanation:
Each sequence of three nucleotides, called a codon, usually codes for one particular amino acid. (Amino acids are the building blocks of proteins.) A type of RNA called transfer RNA (tRNA) assembles the protein, one amino acid at a time.
Answer:
Explanation:
<em>Waves are actually energy passing through the water, causing it to move in a circular motion. ... This phenomenon is a result of the wave's orbital motion being disturbed by the seafloor.</em>
<em>The direction a wave propagates is perpendicular to the direction it oscillates for transverse waves. A wave does not move mass in the direction of propagation; it transfers energy.</em>
By using thermodynamics; you would have to know what the ΔH of the reaction would be too. If an energy diagram is given, you can determine the ΔH from there