Answer: If the intermolecular forces are weak, then molecules can break out of the solid or liquid more easily into the gas phase. Consider two different liquids, one polar one not, contained in two separate boxes. We would expect the molecules to more easily break away from the bulk for the non-polar case. If the molecules are held tightly together by strong intermolecular forces, few of the molecules will have enough kinetic energy to separate from each other. They will stay in the liquid phase, and the rate of evaporation will be low. ... They will escape from the liquid phase, and the rate of evaporation will be high. To make water evaporate, energy has to be added. The water molecules in the water absorb that energy individually. Due to this absorption of energy the hydrogen bonds connecting water molecules to one another will break.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!! :D
Answer:
From least polar covalent to most polar covalent;
S-I< Br-Cl < N-H< Te-O
From most ionic to least ionic
Cs-F> Sr-Cl> Li- N> Al-O
Explanation:
Electro negativity refers to the ability of an atom in a bond to attract the shared electrons of the bond towards itself.
Electro negativity difference between two atoms is a key player in the nature of bond that exists between any two atoms. A large difference in electron negativity leads to an ionic bond while an intermediate difference in electro negativity leads to a polar covalent bond.
Based on electro negativity differences, the bonds in the answer have been arranged in order of increasing polar covalent nature or decreasing ionic nature.
Answer:
D) both a and c are correct
Explanation:
The reaction rate is a measure of the speed of a chemical reaction. The factors that affects the rate of a chemical reaction are itemised below:
- Nature of the reactants
- Concentration of the reactants or pressure(if gaseous)
- Temperature
- Presence of catalyst
- Sunlight
Our concern here is temperature. Temperature affects a reaction considerably. Average kinetic energy is directly proportional to the temperature of the reacting particles. When the temperature of a reacting system is increase, the frequency of ordinary and effective collisions per unit time increases. A decrease in temperature implies that the number of collisions also decreases.
Answer:
sodium carbonate
Explanation:
Sodium hydrogen carbonate (also known as sodium bicarbonate or bicarbonate of soda) has the chemical formula NaHCO3. When it is heated above about 80°C it begins to break down, forming sodium carbonate, water and carbon dioxide. This type of reaction is called a thermal decomposition.
hope it helps! please mark me brainliest
thank you! have a good day ahead
if u follow me, I will follow u back