Answer:
12.3 feet.
Step-by-step explanation:
As we are given that
is an right angled triangle.
![\angle P = 90 ^\circ \\\angle N = 59 ^\circ\\Side\ PN = 7.4 \text{ feet}](https://tex.z-dn.net/?f=%5Cangle%20P%20%3D%2090%20%5E%5Ccirc%20%5C%5C%5Cangle%20N%20%3D%2059%20%5E%5Ccirc%5C%5CSide%5C%20PN%20%3D%207.4%20%5Ctext%7B%20feet%7D)
And we have to find out the value of side OP to the nearest tenth of a foot by rounding off the value as seen in the attached figure as well.
By using Trigonometric functions in a right angled
, we know that:
![tan \theta = \frac{Perpendicular}{Base}](https://tex.z-dn.net/?f=tan%20%5Ctheta%20%3D%20%5Cfrac%7BPerpendicular%7D%7BBase%7D)
Here,
is
, Perpendicular is side <em>OP</em> and Base is side <em>PN</em>.
So, ![tan 59^\circ = \frac{OP}{PN}](https://tex.z-dn.net/?f=tan%2059%5E%5Ccirc%20%3D%20%5Cfrac%7BOP%7D%7BPN%7D)
![\Rightarrow OP = PN \times tan59^\circ](https://tex.z-dn.net/?f=%5CRightarrow%20OP%20%3D%20PN%20%5Ctimes%20tan59%5E%5Ccirc)
Putting the values of <em>PN </em>and
.
![OP = 1.66 \times 7.4\\\Rightarrow OP = 12.3 ft](https://tex.z-dn.net/?f=OP%20%3D%201.66%20%5Ctimes%207.4%5C%5C%5CRightarrow%20OP%20%3D%2012.3%20ft)
Hence, the value of <em>OP </em>is
.