Answer:
1/7
Step-by-step explanation:
Answer:
case 2 with two workers is the optimal decision.
Step-by-step explanation:
Case 1—One worker:A= 3/hour Poisson, ¡x =5/hour exponential The average number of machines in the system isL = - 3. = 4 = lJr machines' ix-A 5 - 3 2 2Downtime cost is $25 X 1.5 = $37.50 per hour; repair cost is $4.00 per hour; and total cost per hour for 1worker is $37.50 + $4.00
= $41.50.Downtime (1.5 X $25) = $37.50 Labor (1 worker X $4) = 4.00
$41.50
Case 2—Two workers: K = 3, pl= 7L= r= = 0.75 machine1 p. -A 7 - 3Downtime (0.75 X $25) = S J 8.75Labor (2 workers X S4.00) = 8.00S26.75Case III—Three workers:A= 3, p= 8L= ——r = 5- ^= § = 0.60 machinepi -A 8 - 3 5Downtime (0.60 X $25) = $15.00 Labor (3 workers X $4) = 12.00 $27.00
Comparing the costs for one, two, three workers, we see that case 2 with two workers is the optimal decision.
Answer:
Slope of the perpendicular line: 2/3
Step-by-step explanation:
-2y = 3x - 6
y = - 3/2x - - 6/2
y = -3/2 + 3
Answer:
81x^4/16 (81x to the fourth over 16)
Step-by-step explanation:
First you apply the exponent rule: (a/b)^c -> a^c/b^c
So it looks like this: 3x^2/4^2
Then you apply the exponent to the whole thing, and 3^4 is 81, x^4 stays like that, and 2^4 is 16
You can't simplify any more after that so that's your answer
Hope this helps!