1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
2 years ago
15

How many 2 quarter hours in half hours

Mathematics
1 answer:
Oxana [17]2 years ago
8 0

Answer:

1 1/3

Step-by-step explanation:

You might be interested in
Anybody know this answer?
AveGali [126]

      3

19  _

      5 is the answer

7 0
2 years ago
Read 2 more answers
Problem 4: Let F = (2z + 2)k be the flow field. Answer the following to verify the divergence theorem: a) Use definition to find
Viktor [21]

Given that you mention the divergence theorem, and that part (b) is asking you to find the downward flux through the disk x^2+y^2\le3, I think it's same to assume that the hemisphere referred to in part (a) is the upper half of the sphere x^2+y^2+z^2=3.

a. Let C denote the hemispherical <u>c</u>ap z=\sqrt{3-x^2-y^2}, parameterized by

\vec r(u,v)=\sqrt3\cos u\sin v\,\vec\imath+\sqrt3\sin u\sin v\,\vec\jmath+\sqrt3\cos v\,\vec k

with 0\le u\le2\pi and 0\le v\le\frac\pi2. Take the normal vector to C to be

\vec r_v\times\vec r_u=3\cos u\sin^2v\,\vec\imath+3\sin u\sin^2v\,\vec\jmath+3\sin v\cos v\,\vec k

Then the upward flux of \vec F=(2z+2)\,\vec k through C is

\displaystyle\iint_C\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^{\pi/2}((2\sqrt3\cos v+2)\,\vec k)\cdot(\vec r_v\times\vec r_u)\,\mathrm dv\,\mathrm du

\displaystyle=3\int_0^{2\pi}\int_0^{\pi/2}\sin2v(\sqrt3\cos v+1)\,\mathrm dv\,\mathrm du

=\boxed{2(3+2\sqrt3)\pi}

b. Let D be the disk that closes off the hemisphere C, parameterized by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath

with 0\le u\le\sqrt3 and 0\le v\le2\pi. Take the normal to D to be

\vec s_v\times\vec s_u=-u\,\vec k

Then the downward flux of \vec F through D is

\displaystyle\int_0^{2\pi}\int_0^{\sqrt3}(2\,\vec k)\cdot(\vec s_v\times\vec s_u)\,\mathrm du\,\mathrm dv=-2\int_0^{2\pi}\int_0^{\sqrt3}u\,\mathrm du\,\mathrm dv

=\boxed{-6\pi}

c. The net flux is then \boxed{4\sqrt3\pi}.

d. By the divergence theorem, the flux of \vec F across the closed hemisphere H with boundary C\cup D is equal to the integral of \mathrm{div}\vec F over its interior:

\displaystyle\iint_{C\cup D}\vec F\cdot\mathrm d\vec S=\iiint_H\mathrm{div}\vec F\,\mathrm dV

We have

\mathrm{div}\vec F=\dfrac{\partial(2z+2)}{\partial z}=2

so the volume integral is

2\displaystyle\iiint_H\mathrm dV

which is 2 times the volume of the hemisphere H, so that the net flux is \boxed{4\sqrt3\pi}. Just to confirm, we could compute the integral in spherical coordinates:

\displaystyle2\int_0^{\pi/2}\int_0^{2\pi}\int_0^{\sqrt3}\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=4\sqrt3\pi

4 0
3 years ago
The angle of depression from the top of a cliff to an ant on the ground is 35 degrees. If the ant is 280 ft from the base of the
Burka [1]

Answer: 315

Step-by-step explanation: hope this is right.

5 0
3 years ago
Find the difference in length between a walking stick and a bumblebee PLS HELP HURRY​
Tanya [424]

Difference between the lengths of walking stick and lengths of bumble bee is 3\frac{4}{8} inch.

Solution:

Given data represents the length of the insects.

Length of the walking stick = 4 in

Length of the bumble bee = \frac{5}{8} in

Difference between their length

                                        $=4-\frac{5}{8}

                                        $=\frac{4}{1} -\frac{5}{8}

To make the denominator same, multiply and divide the first term by 8.

                                        $=\frac{32}{8} -\frac{5}{8}

                                        $=\frac{32-5}{8}

                                        $=\frac{27}{8}

Now, change improper fraction into mixed fraction, we get

                                         $=3\frac{4}{8}

Difference between the lengths of walking stick and lengths of bumble bee is 3\frac{4}{8} inch.

5 0
3 years ago
10) -15xy + 25x ????????????????????
Ierofanga [76]

Factor (−15x)(y)+25x

−15xy+25x

=5x(−3y+5)

Answer:

5x(−3y+5)

6 0
2 years ago
Other questions:
  • Darrius bought 3 gallons of ice cream for $9.50 how much will it cost him if he wants 7 gallons?
    5·1 answer
  • Match each pair of monomials with their greatest common factor
    9·1 answer
  • Find the total for items costing $149.99 with a sales tax of 5.75%
    11·1 answer
  • Find the sum 5 + (-5) + 39
    9·1 answer
  • Four runners are training for long races. Noah Ran 5.123 miles. Andre ran 6.34 miles. Jada ran 7.1 miles. Diego ran 8 miles.
    6·1 answer
  • Cuál es el área de superficie de una esfera con un diámetro de 10 mm ? Redondea al número entero más próximo
    9·1 answer
  • (-6, 9), (7,-9)<br> i need to find the slope
    11·1 answer
  • I need help please.​
    7·1 answer
  • Suppose y varies jointly as x and z. If y=15 when x=1/2 and z=6, what is the constant of variation?
    7·2 answers
  • Alesha is inviting 10 friends to a party, and each friend will get 5 cookies. How many cookies does Alesha need to get
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!