Answer:
option A is correct
Explanation:
when atoms in the solid state are heated they gain energy and start vibration due to which solid molecule lose their rigidity and are converted into liquid by the gain of energy
Answer: Large molecules and wastes move through the membrane through forms of active transport- endocytosis and exocytosis.
Explanation:
Molecules are moved across the cell membrane via different mechanisms like diffusion, facilitated diffusion and passive transport; however, some very large molecules require specialized types of active transport to cross over- these are endocytosis and exocytosis.
During endocytosis large molecules cells and cell fragments moved across the plasma membrane through a process of <em>invagination;</em> piece of the external cell membrane falls into itself and forms a small pocket that surrounds the target molecule this breaks off from the membrane to form an intracellular vesicle. Different methods of endocytosis such as <em>phagocytosis, pinocytosis </em>and receptor-mediated <em>endocytosis</em>, take in cells, water and targeted substances respectively.
Like endocytosis, the particles (signal proteins, neurotransmitters and waste material) are surrounded by a phospholipid membrane. However, in exocytosis, this membrane is formed in the cytoplasm, and merges with the plasma membrane’s interior in a process <em>opposite to </em>endocytosis; material is removed from the cell and exported into the cell’s exterior called the extracellular space.
Answer:
The correct answer would be They comprise the Calvin cycle.
Calvin cycle refers to the set of chemical reactions taking place in the stroma of the chloroplast in which carbon is fixed into food (glucose). The whole process is divided into three stages namely: fixation, reduction, and regeneration (ribulose bisphosphate or RuBP).
It takes place in light-independent reaction of the the photosynthesis.
It does not require light energy to carry out the reactions however, it depends upon the products of light reaction (ATP and NADPH).
Fixation of one molecule of glucose requires 6 molecules of carbon dioxide, 9 ATP and 6 NADPH.
The fixation of carbon is catalyzed by an enzyme RuBisCO.