Answer:
The 99% confidence interval would be given (0.251;0.416).
(25.0 ,41.6)
Step-by-step explanation:
1) Data given and notation
n=219 represent the random sample taken
X=73 represent the students that reported that they have at least $1000 of credit card debt.
estimated proportion of students that reported that they have at least $1000 of credit card debt.
represent the significance level
z would represent the statistic (variable of interest)
p= population proportion of students that reported that they have at least $1000 of credit card debt.
2) Confidence interval
The confidence interval would be given by this formula
For the 99% confidence interval the value of and , with that value we can find the quantile required for the interval in the normal standard distribution.
And replacing into the confidence interval formula we got:
And the 99% confidence interval would be given (0.251;0.416).
We are confident that about 25.1% to 41.6% of students have at least $1000 of credit card debt.
And for this case the most accurate option is:
(25.0 ,41.6)