Answer:
The answer is 2,200ºC
Explanation:
I took the assignment for Edge, I don't think I can send the image because it might pick up on that and get reported, sorry!
The only other rationale that I have is that it's boiling because the graph shows that it's at a constant temperature/rate at 2,200ºC for quite a while. Typically when something boils, it stays at that constant rate of boiling, unless you turn the temperature up or it's finally able to peak..?
Answer:
- <u><em>The first statement is false: a.At equilibrium, equal amounts of products and reactants are present. ΔG° is a function of Keq.</em></u>
Explanation:
When one part of a statement is false, the whole statement is false.
At <em>equilibrium,</em> the amounts of products and reactants does not have to be equal.
At equlibrium the rates of the forward reaction and the reverse reaction must be equal.
An equilibrium reaction may be represented by:
That represents two reactions:
- Direct reaction: A + B → C + D (A and B yield C and D)
- Reverse reaction: A + B ← C + D (C and D yield A and B: note that the arrow goes from right to left)
So, it is when the direct and the forward rates are equal that there is not net change in the amounts of all the species and so the reaction is is equilibrium).
As per the other statement, both parts are true:
- When reactants become products, they do so through an intermediate transitrion state: when the reactants approach each other and collide with enough energy and appropiate position, the bonds start to break and the bonds of the products start to form. This is the transition state.
- Most biocatalysts are proteins: enzymes are simply proteins, with specific structures, that may accelerate or even deceralate biochemical reactions.
Answer:
⇒D_AB= 1.21×10^(-9)
Explanation:
Wike chang equation is given as:

Where
D_AB= diffusivity of chlorine in water
Φ= 2.26 for water as solvent
ν= 0.0484 for chlorine as solute
M_B = Molecular weight of water
τ= temperature=289 K
μ= viscosity = 1.1×10^{-3}
Now putting these values in the above equation we get

⇒D_AB= 1.21×10^(-9)
Answer:- The natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
Solution:- Average atomic mass of an element is calculated from the atomic masses of it's isotopes and their abundances using the formula:
Average atomic mass = mass of first isotope(abundance) + mass of second isotope(abundance)
We have been given with atomic masses for
and
as 150.919860 and 152.921243 amu, respectively. Average atomic mass of Eu is 151.964 amu.
Sum of natural abundances of isotopes of an element is always 1. If we assume the abundance of
as n then the abundance of
would be 1-n .
Let's plug in the values in the formula:

151.964=150.919860n+152.921243-152.921243n
on keeping similar terms on same side:


negative sign is on both sides so it is canceled:



The abundance of
is 0.478 which is 47.8%.
The abundance of
is = 
= 0.522 which is 52.2%
Hence, the natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
Answer:
three half-filled orbitals