Answer:
Heat transfer during melting of ice plays greater role in cooling of liquid water.
Explanation:
Temperature of ice = -10 °c
Temperature of water = 0 °c
When ice cube is dipped in to the water.the heat transfer
Q = m c ΔT
⇒ Q = 1 × 2.01 × 10
⇒ Q = 20.1 KJ
Heat transfer during melting of ice
= latent heat of ice
Latent heat of ice = 334 KJ
⇒
= 334 KJ
Heat transfer during melting of ice is greater value than heat transfer during warming of ice from -10°C to 0°C.
Thus heat transfer during melting of ice plays greater role in cooling of liquid water.
Answer:
creation of radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes.
Explanation:
Nuclear energy produces radioactive waste
A major environmental concern related to nuclear power is the creation of radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes. These materials can remain radioactive and dangerous to human health for thousands of years.
Answer:
NaNO₃
Explanation:
A precipitate is a compound or a salt formed from a precipitation reaction and does not dissolve in water and therefore will exist in solid state.
From the choices given precipitation reaction will occur between;
- Fe(NO₃)₃(aq) + 3NaOH(aq) → Fe(OH)₃(s) + 3NaNO₃(aq)
- Cu(NO₃)₂(aq) + 2NaOH(aq) → Cu(OH)₂(s) + 2NaNO₃(aq)
- FeSO₄(aq) + 2NaOH(aq) → Fe(OH)₂(s) + Na₂SO₄(aq)
Fe(OH)₃, Cu(OH)₂, and Fe(OH)₂ are precipitates.
From the rules of solubility, hydroxides are insoluble except Ca(OH)₂ which is slightly soluble and hydroxides of ammonium and alkali metals.