Answer:
c. $9,702
Explanation:
Elias Corporation has issued 10% bond the semi annual rate of bond is 10%. The 10% rate is divided by 2 to find the actual semi annual rate of interest on the bond. The rate of bond is 5%. The amount at which bond can be sold will be used to calculate interest expense of the bond.
$97,020 * 5% = $4,851
The annual interest expense will be, $4,851 * 2 = $9,702
The correct answer is c.$9,702
In PowerPoint, you can use the speaker note section to make notes to yourself of things you want to be sure and say during your talk. The audience will not see these notes, they are only on the presenters screen (if the presentation is configured properly).
Answer:
the expected return of a stock is 10.542%
Explanation:
The computation of the expected return on a stock is shown below:
Expected return on stock is
= Risk free rate + beta × (market rate of return - risk free rate)
= 2.2% + 0.86 × (11.9% - 2.2%)
= 2.2% + 0.86 × 9.7%
= 2.2% + 8.342
= 10.542%
hence, the expected return of a stock is 10.542%
We simply applied the above formula so that the correct value could come
And, the same is to be considered
The difference between the monthly payment of R and S is equal to $48.53 by following the compound interest formula. Thus, Loan R's monthly loan amount is greater than Loan S.
<h3>What is a Compound interest loan?</h3>
Combined interest (or compound interest) is the loan interest or deposit calculated based on both the original interest and accrued interest from earlier periods.
![\rm\,For\,R\\\\P = \$\,17,550\\r\,= 5.32\%\\Time\,= n= 7\,years\\Amount\,paid= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\=[ 17,550 (1+\dfrac{5.32}{100\times12})^{7\times12} ]\\= [ 17,550 (\dfrac{12.0532}{12})^{84} ]\\\\= [ 17,550 (1.00443^{84} ]\\\\= \$ 25,440.48\\\\Total\,monthly\,payment = \rm\,\dfrac{25,440.48}{84}\\\\= \$\, $302.86\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CR%5C%5C%5C%5CP%20%3D%20%5C%24%5C%2C17%2C550%5C%5Cr%5C%2C%3D%205.32%5C%25%5C%5CTime%5C%2C%3D%20n%3D%207%5C%2Cyears%5C%5CAmount%5C%2Cpaid%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%3D%5B%2017%2C550%20%281%2B%5Cdfrac%7B5.32%7D%7B100%5Ctimes12%7D%29%5E%7B7%5Ctimes12%7D%20%5D%5C%5C%3D%20%5B%2017%2C550%20%28%5Cdfrac%7B12.0532%7D%7B12%7D%29%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%20%5B%2017%2C550%20%281.00443%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%5C%24%2025%2C440.48%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%20%5Crm%5C%2C%5Cdfrac%7B25%2C440.48%7D%7B84%7D%5C%5C%5C%5C%3D%20%5C%24%5C%2C%20%24302.86%5C%5C%5C%5C)
![\rm\,For\,S =\\\\P=\,\$ 15,925\\r\,= 6.07\%\\T=n= 9\,years\\\\Amount\,paid\,= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\\\\= [15,925(1+\dfrac{0.0607}{12})^{9\times12} ]\\\\\\= [15,925(1+\dfrac{0.0607}{12})^{108} ]\\\\=[15,925(1.7247.84)} ]\\\\\= \$27,467.19\\\\Total\,monthly\,payment =\dfrac{\rm\,\$\,27,469.19}{108}\\\\= \$ 254.326\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CS%20%3D%5C%5C%5C%5CP%3D%5C%2C%5C%24%2015%2C925%5C%5Cr%5C%2C%3D%206.07%5C%25%5C%5CT%3Dn%3D%209%5C%2Cyears%5C%5C%5C%5CAmount%5C%2Cpaid%5C%2C%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B9%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B108%7D%20%5D%5C%5C%5C%5C%3D%5B15%2C925%281.7247.84%29%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5C%2427%2C467.19%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%5Cdfrac%7B%5Crm%5C%2C%5C%24%5C%2C27%2C469.19%7D%7B108%7D%5C%5C%5C%5C%3D%20%5C%24%20254.326%5C%5C%5C%5C)
The difference between the monthly payment of R and S is equal to $48.53.
Hence, Loan R's monthly payment is greater than the loan's monthly payment by $48.53
To learn more about Compound interest, refer to the link:
brainly.com/question/14331235
The ten step cycle that results in the timely payment for patients' medical services is the MEDICAL DOCUMENTATION BILLING CYCLE.
Medical billing is a payment method that is used in USA health system. The medical billing process is an interaction between the healthcare providers and the insurance companies who are responsible for payments of medical services rendered to their clients.