You can use a tangent:
![tangent=\dfrac{opposite}{adjacent}](https://tex.z-dn.net/?f=tangent%3D%5Cdfrac%7Bopposite%7D%7Badjacent%7D)
We have opposite = 17 and adjacent = x.
![\tan30^o=\dfrac{\sqrt3}{3}](https://tex.z-dn.net/?f=%5Ctan30%5Eo%3D%5Cdfrac%7B%5Csqrt3%7D%7B3%7D)
substitute:
cross multiply
multiply both sides by √3
![x(\sqrt3)(\sqrt3)=51\sqrt3](https://tex.z-dn.net/?f=x%28%5Csqrt3%29%28%5Csqrt3%29%3D51%5Csqrt3)
divide both sides by 3
![x=17\sqrt3](https://tex.z-dn.net/?f=x%3D17%5Csqrt3)
Use the Pythagorean theorem:
![y^2=(17\sqrt3)^2+17^2\\\\y^2=289(\sqrt3)^2+289\\\\y^2=289\cdot3+289\\\\y^2=867+289\\\\y^2=1156\to y=\sqrt{1156}\\\\y=34](https://tex.z-dn.net/?f=y%5E2%3D%2817%5Csqrt3%29%5E2%2B17%5E2%5C%5C%5C%5Cy%5E2%3D289%28%5Csqrt3%29%5E2%2B289%5C%5C%5C%5Cy%5E2%3D289%5Ccdot3%2B289%5C%5C%5C%5Cy%5E2%3D867%2B289%5C%5C%5C%5Cy%5E2%3D1156%5Cto%20y%3D%5Csqrt%7B1156%7D%5C%5C%5C%5Cy%3D34)
-------------------------------------------------------------------------------------------------
Other method.
triangle.
The sides are in the ratio ![1:2:\sqrt3\to17:y:x](https://tex.z-dn.net/?f=1%3A2%3A%5Csqrt3%5Cto17%3Ay%3Ax)
Therefore
![17:(2\cdot17):(17\sqrt3)\to17:34:17\sqrt3\to x=34,\ y=17\sqrt3](https://tex.z-dn.net/?f=17%3A%282%5Ccdot17%29%3A%2817%5Csqrt3%29%5Cto17%3A34%3A17%5Csqrt3%5Cto%20x%3D34%2C%5C%20y%3D17%5Csqrt3)
Answer:
that you're positive that you should be trying out these difficult math questions, let’s get right to it! The answers to these questions are in a separate section below, so you can go through them all at once without getting spoiled.
#1:
body_ACT_0506_-_56
#2:
body_ACT_0506_-_59
#3:
body_ACT_0809_-_38_J
#4:
body_ACT_0809_-_54
#5:
body_ACT_0809_-_55-1
#6:
body_ACT_0809_-_56
#7:
body_ACT_0809_-_57-1
#8:
body_ACT_0809_-_60
#9:
body_ACT_1112_-__48-1
#10:
body_ACT_1112_-_45
#11:
body_ACT_1112_-_51-1
#12:
body_ACT_1112_-_52
#13:
body_ACT_1112_-_53
#14:
body_ACT_1112_-_58
#15:
body_ACT_1314_-_55-1
Step-by-step explanation:
Answer: A. and D.
Step-by-step explanation: Sorry if its wrong but that sounds right. The first week comes before the second week.