This problem is an example of solving equations with variables on both sides. To solve, we must first set up an equation for both the red balloon and the blue balloon.
Since the red balloon rises at 2.6 meters per second, we can represent this part of the equation as 2.6s. The balloon is already 7.3 meters off of the ground, so we just add the 7.3 to the 2.6s:
2.6s + 7.3
Since the blue balloon rises at 1.5 meters per second, we can represent this part of the equation as 1.5s. The balloon is already 12.4 meters off of the ground, so we just add the 12.4 to the 1.5:
1.5s + 12.4
To determine when both balloons are at the same height, we set the two equations equal to each other:
2.6s + 7.3 = 1.5s + 12.4
Then, we solve for s. First, the variables must be on the same side of the equation. We can do this by subtracting 1.5s from both sides of the equation:
1.1s + 7.3 = 12.4
Next, we must get s by itself. We work towards this by subtracting 7.3 from both sides of the equation:
1.1s = 5.1
Last, we divide both sides by 1.1. So s = 4.63.
This means that it will take 4.63 seconds for both balloons to reach the same height. If we want to know what height that is, we simply plug the 4.63 back into each equation:
2.6s + 7.3
= 2.6 (4.63) + 7.3
= 19.33
1.5s + 12.4
= 1.5 (4.63) + 12.4
= 19.33
After 4.63 seconds, the balloons will have reached the same height: 19.33 meters.
Answer:
Thus the last row has 119 seats.
The total number of seats in 24 rows = 1476
Step-by-step explanation:
The number of seats in each row make an arithmetic series. We will use arithmetic equation to find the number of seats in last row:
An = a1+ (n-1)d
An = 4+(24-1)5
An = 4 + (23)(5)
An = 4 + 115
An = 119
Thus the last row has 119 seats.
Now to find the sum of seats we will apply the formula:
Sn = n(a1 + an)/2
Sn = 24(4+119)/2
Sn = 24(123) /2
Sn = 1476 .....
The total number of seats in 24 rows = 1476....
0.875 as a fraction is 7/8 because 875/100 is equal to 7/8
Answer:
$2/croissant
Step-by-step explanation:
$10÷ 5croissants = $2/ 1 croissant