Answer:
The value of AB is
and it's not possible to multiply BA.
Step-by-step explanation:
Consider the provided matrices.
, ![B=\left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Two matrices can be multiplied if and only if first matrix has an order m × n and second matrix has an order n × v.
Multiply AB
Matrix A has order 2 × 2 and matrix B has order 2 × 1. So according to rule we can multiply both the matrix as shown:
![AB=\left[\begin{array}{ccc}2&3\\2&1\end{array}\right] \left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C2%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}2\times 3+3\times 5\\2\times 3+1\times 5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5Ctimes%203%2B3%5Ctimes%205%5C%5C2%5Ctimes%203%2B1%5Ctimes%205%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}6+15\\6+5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%2B15%5C%5C6%2B5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Hence, the value of AB is ![\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Now calculate the value of BA as shown:
Multiply BA
Matrix B has order 2 × 1 and matrix A has order 2 × 2. So according to rule we cannot multiply both the matrix.
We can multiply two matrix if first matrix has an order m × n and second matrix has an order n × v.
That means number of column of first matrix should be equal to the number of rows of second matrix.
Hence, it's not possible to multiply BA.
We will see that the probability of picking two orange marbles without replacement is 0.23
<h3>
How to get the probability?</h3>
If we assume that all the marbles have the same probability of being randomly picked, then the probability of getting an orange marble is given by the quotient between the number of orange marbles and the total number of marbles, this gives:
P = 6/12 = 1/2
And then we need to get another orange marble, without replacing the one we picked before, this time there are 5 orange marbles and 11 in total, so the probability is:
Q = 5/11
Finally, the joint probability (of these two events happening) is the product of the probabilities, so we get:
P*Q = (1/2)*(5/11) = 0.23
If you want to learn more about probability, you can read:
brainly.com/question/251701
Answer:
A. y = 3x/4
Step-by-step explanation:
a proportional relationship between x and y is a straight line passing through the origin (0, 0).
The equation must be in the form y = kx.
y = 3x/4
y = 3/4x
Answer:
4b^-1
Step-by-step explanation:
16a/4 = 4a
4a/a = 4
4/b = 4b^-1