1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
3 years ago
7

Convert 40,762 ft = _mi_ft​

Mathematics
1 answer:
Margaret [11]3 years ago
6 0

Answer:

7.3 ?

Step-by-step explanation:

You might be interested in
Please help me!!!!!​
denpristay [2]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π               → A = π - (B + C)

                                               → B = π - (A + C)

                                               → C = π - (A + B)

Use Sum to Product Identity: sin A - sin B = 2 cos [(A + B)/2] · sin [(A - B)/2]

Use the following Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → RHS:</u>

LHS:                        sin A - sin B + sin C

                             = (sin A - sin B) + sin C

\text{Sum to Product:}\quad 2\cos \bigg(\dfrac{A+B}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad 2\cos \bigg(\dfrac{\pi -(B+C)}{2}+\dfrac{B}{2}}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad =2\cos \bigg(\dfrac{\pi -C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

.\qquad \qquad =2\cos \bigg(\dfrac{\pi}{2} -\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Cofunction:} \qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Factor:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\bigg]

\text{Given:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)\bigg]\\\\\\.\qquad \qquad =2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi}{2} -\dfrac{(A+B)}{2}\bigg)\bigg]

\text{Cofunction:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)\bigg]

\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ 2\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{LHS = RHS:}\quad 4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)=4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\quad \checkmark

6 0
3 years ago
Can someone pls help me solve thiss
Nikolay [14]

Answer:

The value of x = 9

Step-by-step explanation:

Given the angles of the triangle

  • (13x+2)°
  • (5x-7)°
  • (3x-4)°

We know that the sum of angles of a triangle is 180°.

Therefore,

(13x+2)° + (5x-7)° + (3x-4)° = 180°

13x+2 + 5x-7 + 3x-4 = 180°

21x + 2 - 11 = 180°

21x - 9 = 180°

21x = 180° + 9

21x = 189

divide both side sby 21

21x/21 = 189/21

x = 9

Therefore, the value of x = 9

3 0
3 years ago
Please help! Thank youu
alexandr402 [8]

Answer:

Step-by-step explanation:

(0, 4) (2, 0)

(0-4)/(2-0) = -4/2 = -2

y - 4 = -2(x - 0)

y - 4 = -2x + 0

y = -2x + 4

8 0
3 years ago
Help me please help.me​
STALIN [3.7K]

Answer:

1. C

2. B

3. A

4. C

5. No, SACK is a square because they have 4 side with the same length.

please give me brainliest

4 0
2 years ago
Read 2 more answers
Circumference of circle use3.14 for value
Sladkaya [172]

Answer:

2πr

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • 33 is 6% of what number
    14·2 answers
  • Multiply (x-4) (2x + 3) using the distributive property. Select the answer
    9·1 answer
  • Sara has lived 18.0 years. How many seconds has she lived? Express the answer in scientific notation. Use 365.24 days per year f
    5·1 answer
  • Use (a) the midpoint rule and (b) simpson's rule to approximate the below integral. ∫ x^2sin(x) dx with n = 8.
    14·1 answer
  • PLEASE HELP ME FAST IM SO DUMB I NEED IT SO FAST PLEASEEEE
    7·1 answer
  • Devon owns a house cleaning company and has to give price quotes to potential customers. He figures out his price by assuming a
    5·2 answers
  • 2. A train first travels east for 20 kilometers. Then it turns north and travels for 43 kilometers. Next it goes west for 20 kil
    15·1 answer
  • Sally examined the three triangles pictured below. What is a possible conjecture
    12·1 answer
  • Candace received a 14% raise as part of a promotion with her work. Before the promotion she was earning $22.50 an hour. What is
    8·2 answers
  • 10-d=34-5d<img src="https://tex.z-dn.net/?f=10-d%3D34-5d" id="TexFormula1" title="10-d=34-5d" alt="10-d=34-5d" align="absmiddle"
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!