The correct solution graph to the inequalities are
→ C
→ A
→ B
(NOTE: The graphs are labelled A, B and C from left to right)
For the first inequality,
![4(9x-18)>3(8x+12)](https://tex.z-dn.net/?f=4%289x-18%29%3E3%288x%2B12%29)
First, clear the brackets,
![36x-72>24x+36](https://tex.z-dn.net/?f=36x-72%3E24x%2B36)
Then, collect like terms
![36x-24x>36+72\\12x >108](https://tex.z-dn.net/?f=36x-24x%3E36%2B72%5C%5C12x%20%3E108)
Now divide both sides by 12
![\frac{12x}{12} > \frac{108}{12}](https://tex.z-dn.net/?f=%5Cfrac%7B12x%7D%7B12%7D%20%3E%20%5Cfrac%7B108%7D%7B12%7D)
∴ ![x > 9](https://tex.z-dn.net/?f=x%20%3E%209)
For the second inequality
![-\frac{1}{3}(12x+6) \geq -2x +14](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B3%7D%2812x%2B6%29%20%5Cgeq%20-2x%20%2B14)
First, clear the fraction by multiplying both sides by 3
![3 \times[-\frac{1}{3}(12x+6)] \geq3 \times( -2x +14)](https://tex.z-dn.net/?f=3%20%5Ctimes%5B-%5Cfrac%7B1%7D%7B3%7D%2812x%2B6%29%5D%20%5Cgeq3%20%5Ctimes%28%20-2x%20%2B14%29)
![-1(12x+6) \geq -6x +42](https://tex.z-dn.net/?f=-1%2812x%2B6%29%20%5Cgeq%20-6x%20%2B42)
Now, open the bracket
![-12x-6 \geq -6x +42](https://tex.z-dn.net/?f=-12x-6%20%5Cgeq%20-6x%20%2B42)
Collect like terms
![-6 -42\geq -6x +12x](https://tex.z-dn.net/?f=-6%20-42%5Cgeq%20-6x%20%2B12x)
![-48\geq 6x](https://tex.z-dn.net/?f=-48%5Cgeq%206x)
Divide both sides by 6
![\frac{-48}{6} \geq \frac{6x}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B-48%7D%7B6%7D%20%5Cgeq%20%5Cfrac%7B6x%7D%7B6%7D)
![-8\geq x](https://tex.z-dn.net/?f=-8%5Cgeq%20x)
∴ ![x\leq -8](https://tex.z-dn.net/?f=x%5Cleq%20%20-8)
For the third inequality,
![1.6(x+8)\geq 38.4](https://tex.z-dn.net/?f=1.6%28x%2B8%29%5Cgeq%2038.4)
First, clear the brackets
![1.6x + 12.8\geq 38.4](https://tex.z-dn.net/?f=1.6x%20%2B%2012.8%5Cgeq%2038.4)
Collect likes terms
![1.6x \geq 38.4-12.8](https://tex.z-dn.net/?f=1.6x%20%5Cgeq%2038.4-12.8)
![1.6x \geq 25.6](https://tex.z-dn.net/?f=1.6x%20%5Cgeq%2025.6)
Divide both sides by 1.6
![\frac{1.6x}{1.6}\geq \frac{25.6}{1.6}](https://tex.z-dn.net/?f=%5Cfrac%7B1.6x%7D%7B1.6%7D%5Cgeq%20%20%5Cfrac%7B25.6%7D%7B1.6%7D)
∴ ![x \geq 16](https://tex.z-dn.net/?f=x%20%5Cgeq%20%2016)
Let the graphs be A, B and C from left to right
The first graph (A) shows
and this matches the 2nd inequality
The second graph (B) shows
and this matches the 3rd inequality
The third graph (C) shows
and this matches the 1st inequality
Hence, the correct solution graph to the inequalities are
→ C
→ A
→ B
Learn more here: brainly.com/question/17448505