Answer:
10.60 grams of silane gas are formed.
Explanation:
From the reaction:
Mg₂Si(s) + 4H₂O(l) → 2Mg(OH)₂(aq) + SiH₄(g)
We know that the limiting reactant is Mg₂Si, so to find the mass of SiH₄ formed we need to calculate the number of moles of Mg₂Si:

Where:
m: is the mass of Mg₂Si = 25.0 g
M: is the molar mass of Mg₂Si = 76.69 g/mol

Now, the stoichiometric relation between Mg₂Si and SiH₄ is 1:1 so:

Finally, the mass of SiH₄ is:

Therefore, 10.60 grams of silane gas are formed.
I hope it helps you!
Answer:
-2
Explanation:
Calcium is the element of second group and forth period. The electronic configuration of Calcium is - 2, 8, 8, 2 or
There are 2 valence electrons of Calcium.
Thus, calcium loses two electrons to sulfate ion and sulfate ion accepts these electrons to form ionic bond.
Calcium sulfate,
is formed when 2 valence electrons of calcium are loosed and they are gained by sulfate ion.

Thus, the charge on the sulfate ion is -2.
The potential energy of the reactants is 200J.
From the energy diagram, the energy of the product formed is 350J; this means that, this reaction is an endothermic reaction, because it absorbs energy from its environment.<span />
Answer:
1. HBr>HCl> H2S >BH3
2.K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
Explanation:
As one goes down a row in the Periodic Table the properties that determine the acid strength can be observed.
The atoms get larger in radius meaning that in strength, the strength of the bonds get weaker, conversely meaning that the acids get stronger.
For the halogen-containing acids above following the rows and periods, HBr has the strongest bond and is the strongest acid and others follow in this order.
HBr>HCl> H2S >BH3
Acid Dissociation Constant provides us with information known as the ionization constant which comes in handy to measure the acid's strength. The meaning of the proportions are thus, the higher the Ka value, the stronger the acid i.e. it liberates more number of hydrogen ions per mole of acid in solution.
In solution strong acids completely dissociate hence, the value of dissociation constant of strong acids is very high.
Following the cues above on Ka;
K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
Answer:
Option (D)
Explanation:
Phosphorylation can be simply defined as the addition of a phosphate group to an organic and inorganic molecule. This process helps in regulating the processes that occur in the cells. It leads to the growth and development of cells and this process is efficiently carried out with the help of enzymes like kinase. It also plays an important role in transferring the signals within the cells, synthesis, and functioning of proteins within the cells, and storing as well as releasing of energy.
Thus, the correct answer is option (D).