Answer:
the answer is .6
Step-by-step explanation:
so 30 minus 24 is 6 turn 6 into percentage which is 0.6
Answer:
264
Step-by-step explanation:







<span>I note that this problem starts out with "Which is a factor of ... " This implies that you were given several answer choices. If that's the case, it's unfortunate that you haven't shared them.
I thought I'd try finding roots of this function using synthetic division. See below:
f(x) = 6x^4 – 21x^3 – 4x^2 + 24x – 35
Please use " ^ " to denote exponentiation. Thanks.
Possible zeros of this poly are factors of 35: plus or minus 1, plus or minus 5, plus or minus 7. Use synthetic division; determine whether or not there is a non-zero remainder in each case. If none of these work, form rational divisors from 35 and 6 and try them: 5/6, 7/6, 1/6, etc.
Provided that you have copied down the function
</span>f(x) = 6x^4 – 21x^3 – 4x^2 + 24x – 35 properly, this approach will eventually turn up 1 or 2 zeros of this poly. Obviously it'd be much easier if you'd check out the possible answers given you with this problem.
By graphing this function, I found that the graph crosses the x-axis at 7/2. There is another root.
Using synth. div. to check whether or not 7/2 is a root:
___________________________
7/2 / 6 -21 -4 24 -35
21 0 -14 35
----------- ------------------------------
6 0 -4 10 0
Because the remainder is zero, 7/2 (or 3.5) is a root of the polynomial. Thus, (x-3.5), or (x-7/2), is a factor.
Answer:
$172,984.44
Step-by-step explanation:
We can use the formula
to compute the final amount
Here P is the principal amount, the original deposit = $25,000
r is the annual interest rate = 6.5% = 0.065 in decimal
n is the number of times the compounding takes place. Here it is quarterly so it is 4 times a year
t is the number of time periods ie 30 years
A is the accrued amount ie principal + interest
Computing different components,



Therefore

Answer:
0.0433
Step-by-step explanation:
Since we have a fixed number of trials (N = 25) and the probability of getting heads is always p = 0.05, we are going to treat this as a binomial distribution.
Using a binomial probability calculator, we find that the probability of obtaining heads from 8 to 17 times is 0.9567 given that the con is fair. The probability of obtaining any other value given that the coin is fair is going to be:
1 - 0.9567 = 0.0433
Since we are going to conclude that the coin is baised if either x<8 or x>17, the probability of judging the coin to be baised when it is actually fair is 4.33%