Plug x = 0 into the function
f(x) = x^3 + 2x - 1
f(0) = 0^3 + 2(0) - 1
f(0) = -1
Note how the result is negative. The actual number itself doesn't matter. All we care about is the sign of the result.
Repeat for x = 1
f(x) = x^3 + 2x - 1
f(1) = 1^3 + 2(1) - 1
f(1) = 2
This result is positive.
---------------------------
We found that f(0) = -1 and f(1) = 2. The first output -1 is negative while the second output 2 is positive. Going from negative to positive means that, at some point, we will hit y = 0. We might have multiple instances of this happening, or just one. We don't know for sure. The only thing we do know is that there is at least one root in this interval.
To actually find this root, you'll need to use a graphing calculator because the root is some complicated decimal value. Using a graphing calculator, you should find the root to be approximately 0.4533976515
Answer:
The first option .
Step-by-step explanation:
m must not be zero
4a + 3b - a - 5b
First, gather the like terms.
Second, subtract 4a - a to get 3a.
Third, subtract 3b - 5b to get 2b.

Answer:
3a - 2b
Answer:
dfgggggg i like ya cut g
Step-by-step explanation:xgbxgbxb