1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
3 years ago
11

In the poportion 1/z =4/5/8 which number is equal to z in the proportion

Mathematics
1 answer:
Nady [450]3 years ago
8 0

Answer:

case 1) z=10

case 2) z=5/32

Step-by-step explanation:

case 1) we know that

Using proportion

\frac{1}{z}=\frac{(4/5)}{8}

solve for z

\frac{1}{z}=\frac{(4/5)}{8}\\ \\z(4/5)=8\\ \\z=8*5/4\\ \\z=10

case 2) we know that

Using proportion

\frac{1}{z}=\frac{4}{5/8}

solve for z

\frac{1}{z}=\frac{4}{5/8}\\ \\4z=5/8\\ \\z=5/32

You might be interested in
Alisha asked 120 students what kind of pet they liked the most. Exactly 45% of the students said they liked dogs best. What was
7nadin3 [17]

Answer: 54 liked best

Step-by-step explanation: None

8 0
3 years ago
Read 2 more answers
What is the constant ratio formula
Zigmanuir [339]
DEFINITION of 'Constant Ratio Plan' Aconstant ratio plan is a strategic asset allocation strategy, or formula, which keeps the aggressive and conservative portions of a portfolio set at a fixedratio.
3 0
3 years ago
in isosceles triangle the length of a leg is 17 cm, the vase is 16 cm. find the length of the altitude to the base
bogdanovich [222]

Answer:

15 cm

Step-by-step explanation:

The altitude is one leg of the right triangle formed by the altitude, half the base, and the triangle side. The Pythagorean theorem applies, so you have ...

... (17 cm)² = (altitude)² + (16 cm/2)²

... altitude = √(17² -8²) cm = √225 cm

... altitude = 15 cm

8 0
3 years ago
What is Limit of StartFraction StartRoot x + 1 EndRoot minus 2 Over x minus 3 EndFraction as x approaches 3?
scoray [572]

Answer:

<u />\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \boxed{ \frac{1}{4} }

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]
Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify given limit</em>.

\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3}

<u>Step 2: Find Limit</u>

Let's start out by <em>directly</em> evaluating the limit:

  1. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \frac{\sqrt{3 + 1} - 2}{3 - 3}
  2. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \frac{\sqrt{3 + 1} - 2}{3 - 3} \\& = \frac{0}{0} \leftarrow \\\end{aligned}

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:

  1. [Limit] Apply Limit Rule [L' Hopital's Rule]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\\end{aligned}
  2. [Limit] Differentiate [Derivative Rules and Properties]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \leftarrow \\\end{aligned}
  3. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \leftarrow \\\end{aligned}
  4. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \\& = \boxed{ \frac{1}{4} } \\\end{aligned}

∴ we have <em>evaluated</em> the given limit.

___

Learn more about limits: brainly.com/question/27807253

Learn more about Calculus: brainly.com/question/27805589

___

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

3 0
2 years ago
What equation is described below?
slega [8]

Answer:

7×7=49

Step-by-step explanation:

Is means equals and times means multiply

7×7=49

True

7−7=49

7-7=0  False

7+7=49

7+7 =14  False

49÷7=7

True but this is not the equation described above

7×7=48

49False

8 0
3 years ago
Other questions:
  • Q. # 17 Graph the inequality on a coordinate plane.. <br> - y &lt; 3x - 5
    7·2 answers
  • <img src="https://tex.z-dn.net/?f=f%28x%29%3D16t%5E2%2B32t" id="TexFormula1" title="f(x)=16t^2+32t" alt="f(x)=16t^2+32t" align="
    11·1 answer
  • Hello I need help for this math homework please
    9·1 answer
  • The Venn diagram shows three types of numbers: odd (O), even (E), and prime (P).
    14·1 answer
  • Help me please ASAP!!!!
    14·2 answers
  • How Many solutions are there for the<br> following system.<br> y = x² - 5x + 3<br> Y = x - 6
    13·1 answer
  • Semisuma lungimii bazelor este formula de calcul pentru: *
    12·1 answer
  • Plssss helppppp and thanks you if answers are actually true then I give brain:)
    6·1 answer
  • What are the coordinates of the vertices of the figure A'B'C'after the following transformation. (x,y) ---&gt; ( y, -x)​
    10·1 answer
  • Plz help verbal expression ​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!