O,P,Ge ranked from atomic radius
C.) hydrogen bonding interactions.
Answer:
4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.
Explanation:
By ideal gas equation:

Number of moles (n)
can be written as: 
where, m = given mass
M = molar mass

where,
which is known as density of the gas
The relation becomes:
.....(1)
We are given:
M = molar mass of chloroform= 119.5 g/mol
R = Gas constant = 
T = temperature of the gas = 
P = pressure of the gas = 1.00 atm
Putting values in equation 1, we get:

4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.
Molarity is simply the ratio of the number of moles of a
substance over the total volume of the solution. Assuming that the addition of
0.850 moles does not change the overall volume of 1.70 L, therefore molarity is
simply:
Molarity = 0.850 moles / 1.70 L = 0.5 moles / L = 0.5 M