When I see the word "which" at the beginning of your question,
I just KNOW that there's a list of choices printed right there
next to he part that you copied, and for some mysterious
reason, you decided not to let us see the choices.
Any flashlight, light bulb, laser, or spark ... like lightning ...
converts some electrical energy into some light energy.
Answer:
(a) 62.69 nJ/m^3
(b) 1015.22 μJ/m^3
Explanation:
Electric field, E = 119 V/m
Magnetic field, B = 5.050 x 10^-5 T
(a) Energy density of electric field = 
= 6.269 x 10^-8 J/m^3 = 62.69 nJ/m^3
(b) energy density of magnetic field = 

= 1.01522 x 10^-3 J/m^3 = 1015.22 μJ/m^3
Answer:
It is an SI unit
Explanation:
The metre is defined as the length of the path travelled by light in a vacuum in 1299 792 458 of a second. The metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>