I can conclude that the aluminum heats up faster then the water, since how they are made up is more different, each has a different compound to it, plus water is more denser<span />
Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
Answer:
a) 24.4 Ω
b) 4.92 A
c) 495.9 W
d)
c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.
Explanation:
b)
The formula for power is:
P = IV
where,
P = Power of heater = 590 W
V = Voltage it takes = 120 V
I = Current Drawn = ?
Therefore,
590 W = (I)(120 V)
I = 590 W/120 V
<u>I = 4.92 A</u>
<u></u>
a)
From Ohm's Law:
V = IR
R = V/I
Therefore,
R = 120 V/4.92 A
<u>R = 24.4 Ω</u>
<u></u>
c)
For constant resistance and 110 V the power becomes:
P = V²/R
Therefore,
P = (110 V)²/24.4 Ω
<u>P = 495.9 W</u>
<u></u>
d)
If the resistance decreases, it will increase the current according to Ohm's Law. As a result of increase in current the power shall increase according to formula (P = VI). Therefore, correct option is:
<u>c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.</u>
Answer:
Heat is very important in our daily life in warming the house, cooking, heating the water, and drying the washed clothes. The heat has many usages in the industry as making and processing the food and manufacture of the glass, the paper, the textile, and etc.
Explanation:
False.
As temperature increases the more the electrons begin to vibrate more, as it decreases they vibrate less.