Answer:

Step by step Explanation:
![\sin \theta = \dfrac{\text{Perpendicular} }{\text{Hypotenuse}} = \dfrac{12}{15}\\\\\\\cos \theta = \dfrac{\text{Base}}{\text{Hypotenuse}}= \dfrac{9}{15}\\\\\text{Now,}\\\\\tan \dfrac{\theta}2 = \dfrac{\sin \tfrac{\theta}2}{\cos \tfrac{\theta}2}\\\\\\~~~~~~~~=\dfrac{2\cos \tfrac{\theta}2 \sin \tfrac{\theta}2 }{2\cos^2 \tfrac{\theta}2}~~~~~~;\left[\text{Multiply by}~ 2\cos\tfrac{\theta}2 \right]](https://tex.z-dn.net/?f=%5Csin%20%5Ctheta%20%3D%20%5Cdfrac%7B%5Ctext%7BPerpendicular%7D%20%7D%7B%5Ctext%7BHypotenuse%7D%7D%20%3D%20%5Cdfrac%7B12%7D%7B15%7D%5C%5C%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Cdfrac%7B%5Ctext%7BBase%7D%7D%7B%5Ctext%7BHypotenuse%7D%7D%3D%20%5Cdfrac%7B9%7D%7B15%7D%5C%5C%5C%5C%5Ctext%7BNow%2C%7D%5C%5C%5C%5C%5Ctan%20%5Cdfrac%7B%5Ctheta%7D2%20%3D%20%5Cdfrac%7B%5Csin%20%5Ctfrac%7B%5Ctheta%7D2%7D%7B%5Ccos%20%5Ctfrac%7B%5Ctheta%7D2%7D%5C%5C%5C%5C%5C%5C~~~~~~~~%3D%5Cdfrac%7B2%5Ccos%20%5Ctfrac%7B%5Ctheta%7D2%20%5Csin%20%5Ctfrac%7B%5Ctheta%7D2%20%7D%7B2%5Ccos%5E2%20%5Ctfrac%7B%5Ctheta%7D2%7D~~~~~~%3B%5Cleft%5B%5Ctext%7BMultiply%20by%7D~%202%5Ccos%5Ctfrac%7B%5Ctheta%7D2%20%5Cright%5D)
![=\dfrac{\sin \theta}{1+ \cos \theta}~~~~~~~~~~~~;[2 \sin x \cos x = \sin 2x ~ \text{and}~ 2\cos^2 x =1+\cos 2x]\\\\\\=\dfrac{\tfrac{12}{15}}{1+ \tfrac{9}{15}}\\\\\\=\dfrac{\tfrac{12}{15}}{\tfrac{24}{15}}\\\\\\=\dfrac{12}{15}\times \dfrac{15}{24}\\\\\\=\dfrac{12}{24}\\\\\\=\dfrac{1}2](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B%5Csin%20%5Ctheta%7D%7B1%2B%20%5Ccos%20%5Ctheta%7D~~~~~~~~~~~~%3B%5B2%20%5Csin%20x%20%5Ccos%20x%20%3D%20%5Csin%202x%20~%20%5Ctext%7Band%7D~%202%5Ccos%5E2%20x%20%3D1%2B%5Ccos%202x%5D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B%5Ctfrac%7B12%7D%7B15%7D%7D%7B1%2B%20%5Ctfrac%7B9%7D%7B15%7D%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B%5Ctfrac%7B12%7D%7B15%7D%7D%7B%5Ctfrac%7B24%7D%7B15%7D%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B12%7D%7B15%7D%5Ctimes%20%5Cdfrac%7B15%7D%7B24%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B12%7D%7B24%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D2)
Answer:
The first step to solve the equation below is to first distribute the 2 to (x+7)
Step-by-step explanation:
2 (x+7) = -4x + 14
2x + 14 = -4x + 14
Start with the parent function f(x) = x³
Notice the function f(x) = (x - 4)³ that a value '4' is subtracted from 'x' ⇒ This means the function f(x) is translated four units to the right.
Then the function f(x) = ¹/₂ (x - 4)³, the function (x - 4)³ is halved vertically ⇒ Half the y-coordinate
Then the function f(x) = ¹/₂ (x - 4)³ + 5 that a value '5' is added to ¹/₂ (x - 4)³ ⇒ This means the function f(x) is translated five units up
So the order of transformation that is happening to f(x) = x³ is translation four units to the right, half the y-coordinate, then translate 5 units up.
Break into 2 equatins to get x's:
2x-6<4 and 2x-6>-4
Solve for x in both:
2x-6<4
2x<10
x<5
2x-6>-4
2x>2
x>1
Graph both inequalities on the same number line:
<---0-----1-----2-----3-----4-----5-----6--->