Answer:
D) 3/15
Step-by-step explanation:
(-2/5) - (-9/15) = (-6/15) - (-9/15) = (-6/15) + (9/15) = 3/15
Answer:
42
Step-by-step explanation:
Let x = the original number of bushes in garden A
Let x-9 = the original number of bushes in garden B
x-9-3=x-12 = bushes in garden B after transplanting 3
x+3 = bushes in garden A after transplanting 3
x+3=1.5(x-12)
x+3=1.5x-18
0.5x=21
x=42
There were 42 current bushes in garden A
Answer:
100
Step-by-step explanation:
We have the sum of first n terms of an AP,
Sn = n/2 [2a+(n−1)d]
Given,
36= 6/2 [2a+(6−1)d]
12=2a+5d ---------(1)
256= 16/2 [2a+(16−1)d]
32=2a+15d ---------(2)
Subtracting, (1) from (2)
32−12=2a+15d−(2a+5d)
20=10d ⟹d=2
Substituting for d in (1),
12=2a+5(2)=2(a+5)
6=a+5 ⟹a=1
∴ The sum of first 10 terms of an AP,
S10 = 10/2 [2(1)+(10−1)2]
S10 =5[2+18]
S10 =100
This is the sum of the first 10 terms.
Hope it will help.
Answer is option C 19.64 sq units
Answer:
Step-by-step explanation:
f(x) = x2 + 2x - 2 should be rewritten using " ^ " to indicate exponentiation:
f(x) = x^2 + 2x - 2.
We find a couple of key points and use the fact that this parabola is symmetric about the line
-2
x = ----------- = -1. When x = -1, y = f(-1) = (-1)^2 + 2(-1) - 2, or 1 - 2 -2, or -3.
2(1)
Thus the vertex is at (-1, -3). The y-intercept is found by letting x = 0: y = -2. The axis of symmetry is x = -1.
Graph x = -1 and then reflect this y-intercept (0, -2) about the line x = -1, obtaining (-2, -2). If necessary, find 1 or two more points (such as the x-intercepts).
To find the roots (x-intercepts), set f(x) = x^2 + 2x - 2 = 0 and solve for x.
Completing the square, we obtain x^2 + 2x + 1 - 2 = + 1, or (x + 1)^2 = 3.
Taking the square root of both sides yields x + 1 = ±√3. One of the two roots is x = 1.732 - 1, or 0.732, so one of the two x-intercepts is (0.732, 0).