The concentration of mixed solution = 0.5 M
<h3>
Further explanation
</h3>
Given
0.5 M HCl
0.5 M Ca(OH)₂
Required
The concentration
Solution
Molarity from 2 solutions :
Vm Mm = V₁. M₁ + V₂. M₂
m = mixed solution
V = volume
M = molarity
V = mixed volume
1 = solution 1
2 = solution 2
Vm = V₁+V₂
Equal volumes⇒V₁=V₂, and Vm = 2V, then equation becomes :
2V.Mm = V(M₁+M₂)
2V.Mm = V(0.5+0.5)
Mm=0.5 M
Answer:
The final electron acceptor of the electron transport chain is oxygen
Explanation:
Four electrons gotten from cytochrome c are involved in the conversion of a molecule of oxygen (O2) to two molecules of water (H2O). This final electron transfer occurs in complex IV. Complex IV, also known as cytochrome c oxidase, facilitates the the use of four protons from the matrix of the mitochondrion, in the production of water molecules while pumping four protons to the intermembrane space of the mitochondrion.
Answer:
kJ/mol
Explanation: <u>Enthalpy</u> <u>Change</u> is the amount of energy in a reaction - absorption or release - at a constant pressure. So, <u>Standard</u> <u>Enthalpy</u> <u>of</u> <u>Formation</u> is how much energy is necessary to form a substance.
The standard enthalpy of formation of HCl is calculated as:

→ 
Standard Enthalpy of formation for the other compounds are:
Calcium Hydroxide:
-1002.82 kJ/mol
Calcium chloride:
-795.8 kJ/mol
Water:
-285.83 kJ/mol
Enthalpy is given per mol, which means we have to multiply by the mols in the balanced equation.
Calculating:
![-17.2=[-795.8+2(285.85)]-[-1002.82+2\Delta H]](https://tex.z-dn.net/?f=-17.2%3D%5B-795.8%2B2%28285.85%29%5D-%5B-1002.82%2B2%5CDelta%20H%5D)



So, the standard enthalpy of formation of HCl is -173.72 kJ/mol
Due to the variables that each inquiry has, Scientific inquiry follows a path of questioning and testing a hypothesis, however this changes in response to specific details.
Answer:
a) C4H6+2H2=C4H10
b) 4Na+CF4=4NaF+C
c) 2Na+2NH3=2NaNH2+H2
d) 2H202=2H2O+O2
Explanation:
Try and make sure there is the same number of reactants as products