Answer:
c. 8.25
Step-by-step explanation:
The given scenario corresponds to binomial experiment because
1. There are two possible outcomes i.e. each number can be working or not working.
2. On each dialing the probability of getting working cell number is p=0.55.
3. Cell phone numbers are randomly dialed so these are independent.
4. A pollster dialed 15 cell numbers i.e. n=15.
The mean number of calls that reach a working cell number can be calculated by computing mean of binomial distribution using the given information.
Mean of binomial distribution=E(x)=np
The mean number of calls that reach a working cell number=15*0.55=8.25
Thus, the mean number of calls that reach a working cell number=8.25
Yes,
12/20 = 0.6 pages per minute
15/25 = 0.6 pages per minute
Answer:
A
Step-by-step explanation:
I'm certain the answer is this, and I understand that you are in a hurry. I can update it anytime you'd like to see the explanation
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra II</u>
- Natural logarithms ln and Euler's number e
- Logarithmic Property [Dividing]:

- Logarithmic Property [Exponential]:

<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
- Implicit Differentiation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Rewrite</u>
- [Equality Property] ln both sides:
![\displaystyle lny = ln \bigg[ \frac{(2x - 3)^2}{(3x + 4)^3} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20lny%20%3D%20ln%20%5Cbigg%5B%20%5Cfrac%7B%282x%20-%203%29%5E2%7D%7B%283x%20%2B%204%29%5E3%7D%20%5Cbigg%5D)
- Expand [Logarithmic Property - Dividing]:

- Simplify [Logarithmic Property - Exponential]:

<u>Step 3: Differentiate</u>
- Implicit Differentiation:
![\displaystyle \frac{dy}{dx}[lny] = \frac{dy}{dx} \bigg[ 2ln(2x - 3) - 3ln(3x + 4) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%5Blny%5D%20%3D%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cbigg%5B%202ln%282x%20-%203%29%20-%203ln%283x%20%2B%204%29%20%5Cbigg%5D)
- Logarithmic Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle \frac{1}{y} \ \frac{dy}{dx} = 2 \bigg( \frac{1}{2x - 3} \bigg)\frac{dy}{dx}[2x - 3] - 3 \bigg( \frac{1}{3x + 4} \bigg) \frac{dy}{dx}[3x + 4]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B1%7D%7By%7D%20%5C%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%202%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B2x%20-%203%7D%20%5Cbigg%29%5Cfrac%7Bdy%7D%7Bdx%7D%5B2x%20-%203%5D%20-%203%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B3x%20%2B%204%7D%20%5Cbigg%29%20%5Cfrac%7Bdy%7D%7Bdx%7D%5B3x%20%2B%204%5D)
- Basic Power Rule:

- Simplify:

- Isolate
: 
- Substitute in <em>y</em> [Derivative]:

- Simplify:
![\displaystyle \frac{dy}{dx} = \frac{(2x - 3)^2}{(3x + 4)^3} \bigg[ \frac{4(3x + 4) - 9(2x - 3)}{(2x - 3)(3x +4)} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B%282x%20-%203%29%5E2%7D%7B%283x%20%2B%204%29%5E3%7D%20%5Cbigg%5B%20%5Cfrac%7B4%283x%20%2B%204%29%20-%209%282x%20-%203%29%7D%7B%282x%20-%203%29%283x%20%2B4%29%7D%20%5Cbigg%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e
308 gallons of 7% and 77 gallons of 2% are needed to obtain the desired 385 gallons.
<h3><u>Combination</u></h3>
Since a dairy needs 385 gallons of milk containing 6% butterfat, to determine how many gallons each of milk containing 7% butterfat and milk containing 2% butterfat must be used to obtain the desired 385 gallons, the following calculation must be performed:
- 385 x 0.06 = 23.1
- 300 x 0.07 + 85 x 0.02 = 22.7
- 310 x 0.07 + 75 x 0.02 = 23.2
- 308 x 0.07 + 77 x 0.02 = 23.1
Therefore, 308 gallons of 7% and 77 gallons of 2% are needed to obtain the desired 385 gallons.
Learn more about combination in brainly.com/question/27339616
#SPJ1